Math, asked by vaibhavsayare, 1 month ago

maths question plz help me to solve​

Attachments:

Answers

Answered by Sirat4
0

Answer:

\frac{1}{2}  \left[\begin{array}{cc}8&1\\1&-10\end{array}\right]  + \frac{1}{2} \left[\begin{array}{cc}0&-5\\5&0\end{array}\right]

explanation:

Sum of symmetric and skew symmetric matrix = 1/2(A + A') + 1/2(A + A')

A = \left[\begin{array}{cc}4&-2&\\3&-5&\end{array}\right]    , A'     = \left[\begin{array}{cc}4&3\\-2&-5\end{array}\right]

(A + A')  = \left[\begin{array}{cc}4&-2&\\3&-5&\end{array}\right]  + \left[\begin{array}{cc}4&3\\-2&-5\end{array}\right]    

= \left[\begin{array}{cc}8&1\\1&-10\end{array}\right]

(A - A') = \left[\begin{array}{cc}4&-2&\\3&-5&\end{array}\right]  - \left[\begin{array}{cc}4&3\\-2&-5\end{array}\right]

          =\left[\begin{array}{cc}0&-5\\5&0\end{array}\right]

Now,  1/2(A + A') + 1/2(A - A')

\frac{1}{2}  \left[\begin{array}{cc}8&1\\1&-10\end{array}\right]  + \frac{1}{2} \left[\begin{array}{cc}0&-5\\5&0\end{array}\right]

Similar questions