Math, asked by bawasohani, 6 hours ago

maths question solve it fast​

Attachments:

Answers

Answered by mathdude500
6

Given Question

Prove that

 \sf \: tan13x - tan9x - tan4x = tan13x \: tan9x \: tan4x

\large\underline{\sf{Solution-}}

We know that

\rm :\longmapsto\:13x = 9x + 4x

\rm :\longmapsto\:tan13x = tan(9x + 4x)

We know,

\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}

So, using this identity, we get

\rm :\longmapsto\:tan13x = \dfrac{tan9x + tan4x}{1 - tan9x \: tan4x}

\rm :\longmapsto\:tan13x - tan13xtan9xtan4x = tan9x + tan4x

On rearrange the terms, we get

\rm :\longmapsto\:tan13x -tan9x - tan4x =  tan13xtan9xtan4x

Or

 \purple{\boxed{\sf{ tan13x \: tan9x \: tan4x = tan13x - tan9x - tan4x}}}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

 \pink{\boxed{\tt{ sin(x + y) = sinx \: cosy + siny \: cosx}}}

 \pink{\boxed{\tt{ sin(x  -  y) = sinx \: cosy  -  siny \: cosx}}}

 \green{\boxed{\tt{ cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny}}}

 \green{\boxed{\tt{ cos(x  -  y) = cosx \: cosy \:   +   \: sinx \: siny}}}

 \blue{\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}}

 \blue{\boxed{\tt{ tan(x - y) =  \frac{tanx  -  tany}{1  +  tanx \: tany}}}}

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

Given Question

Prove that

 \sf \: tan13x - tan9x - tan4x = tan13x \: tan9x \: tan4x

\large\underline{\sf{Solution-}}

We know that

\rm :\longmapsto\:13x = 9x + 4x

\rm :\longmapsto\:tan13x = tan(9x + 4x)

We know,

\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}

So, using this identity, we get

\rm :\longmapsto\:tan13x = \dfrac{tan9x + tan4x}{1 - tan9x \: tan4x}

\rm :\longmapsto\:tan13x - tan13xtan9xtan4x = tan9x + tan4x

On rearrange the terms, we get

\rm :\longmapsto\:tan13x -tan9x - tan4x =  tan13xtan9xtan4x

Or

 \blue{\boxed{\sf{ tan13x \: tan9x \: tan4x = tan13x - tan9x - tan4x}}}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

 \red{\boxed{\tt{ sin(x + y) = sinx \: cosy + siny \: cosx}}}

 \red{\boxed{\tt{ sin(x  -  y) = sinx \: cosy  -  siny \: cosx}}}

 \blue{\boxed{\tt{ cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny}}}

 \blue{\boxed{\tt{ cos(x  -  y) = cosx \: cosy \:   +   \: sinx \: siny}}}

 \green{\boxed{\tt{ tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}}}}

 \green{\boxed{\tt{ tan(x - y) =  \frac{tanx  -  tany}{1  +  tanx \: tany}}}}

Similar questions