Math, asked by vivek49459, 1 month ago

maths
solve and answer me​

Attachments:

Answers

Answered by 12thpáìn
24

3)

  • Express the following in the form of p / q where p and q are integers and q ≠0 .

 \sf(a)  \:  \:  0.  \bar{7} \:  \: (b) \:  \: 0. \overline{23} \:  \: (c) \:  \: 0.\overline{9} \:  \: (d) \:  \: 0.\overline{001}

Solution

\\\pink{ \sf(a)  \:  \:  0.  \bar{7}}

Let  \: x = 0. \overline{7}.\:  \: Then

{\implies \: x = 0.7777. .. .. . \:  \:  \:  \:  \:  \:  -  -  -  - (1)}

  • Multiplying both sides by 10

{\implies \:10 x = 7.7777.. . . .. \:  \:  \:  \:  \:  \:  -  -  -  - (2)}

  • On subtracting (1) From (2) we get

\implies 10x - x = 7.7777. .. - 0.7777. .. .. .

\implies 9x  = 7

\implies x  =  \dfrac{7}{9}

  \pink{\implies \sf  \:  \:  0.  \bar{7} =  \dfrac{7}{9} }\\\\

 \green{ \sf(b) \:  \: 0. \overline{23}}

\implies  let \: x = 0. \overline{23}

 {\implies \: x = 0.353535.. . \:  \:  \:  \:  \:  \:  \:  -  -  - (1)}

  • Here we have to repeating decimal after the decimal point so we multiply side of (1 ) by 10²=100 to get

{\implies 100x = 23.23232... \:  \:  \:  \:  \:  -  -  - (2)}

  • On subtracting (1) From (2) we get

\implies 100x - x = (23.2323232. . .) - (0.232323.. .)

\implies 99x= 23

 \green{x=  \dfrac{23}{99}}  \\  \\

 \blue{ (c) \:  \: 0.\overline{9}}

Let  \: x = 0. \overline{9}.\:  \: Then

{\implies \: x = 0.9999. .. . .. \:  \:  \:  \:  \:  \:  -  -  -  - (1)}

  • Multiplying both sides by 10

{\implies \:10 x = 9.99999.. . .. \:  \:  \:  \:  \:  \:  -  -  -  - (2)}

  • On subtracting (1) From (2) we get

\implies 10x - x = 9.9999. .. - 0.9999. . .. .

\implies 9x  = 9

\implies x  =  \dfrac{9}{9}

  \blue{\sf  \:  \:  0.  \bar{7} = 1 }\\\\

 \orange{(d) \:  \: 0.\overline{001}}

 let \: x = 0. \overline{001001001. . .}

 {\implies \: x = 0.001001001 . . . \:  \:  \:  \:  \:  \:  \:  -  -  - (1)}

  • Here we have to repeating decimal after the decimal point so we multiply side of (1 ) by 10³=1000 to get

{\implies1000x = 1.001001001 \:  \:  \:  \:  \:  -  -  - (2)}

  • On subtracting (1) From (2) we get

\implies100x - x = (    1.001001001   ) -( 0.001001001. . .)

\implies999x= 1

 \orange{\implies x=  \dfrac{1}{999}} \\\\ \\  \\

4)

simplify the following

  \sf\sqrt{48}  -  \sqrt{72}  -  \sqrt{27}  + 2 \sqrt{18}

Solution

{\sf \implies \: \sqrt{48}  -  \sqrt{72}  -  \sqrt{27}  + 2 \sqrt{18} }

{\sf \implies \: \sqrt{2 \times 2 \times 2 \times 2 \times 3}  -  \sqrt{2 \times 2 \times 2 \times 3 \times 3}  -  \sqrt{3 \times 3 \times 3}  + 2 \sqrt{3 \times 3 \times 2} }

{\sf \implies \: \sqrt{ ( {2}^{2} )^{2}    \times 3}  - \sqrt{ {2}^{3}  \times  {3}^{2} }  -  \sqrt{ {3}^{3} }  + 2 \sqrt{ {3}^{2}  \times 2} }

{\sf \implies \:4 \sqrt{     3}  - \sqrt{ {2}^{2}  \times  {3}^{2}  \times 2}  -  \sqrt{ {3}^{2}  \times 3}  + 2 \times 3 \sqrt{   2} }

{\sf \implies \:4 \sqrt{     3}  - \sqrt{  {6}^{2}   \times 2}  -  3\sqrt{    3}  + 6 \sqrt{   2} }

{\sf \implies \:4 \sqrt{     3} -  3\sqrt{    3} - 6\sqrt{      2}    + 6 \sqrt{   2} }

{\sf \implies \: \sqrt{3}  \:  \:  \:  \:  \:  \:  \:  \:  \cancel{ - 6\sqrt{      2} }    \:  \:  \:  \:  \: \cancel{ + 6 \sqrt{   2} }}

{\sf \implies \: \sqrt{3}  \:  \:  \:  \:  }\\\\

Similar questions