Math, asked by david597, 2 months ago

maths
solve and answer me ​

Attachments:

Answers

Answered by redx18
1

Answer:

1) let \: x = 2 +  \sqrt{3}  \\ value \: of  \: {x}^{2}  +  \frac{1}{ {x}^{2} }  \\ substituting \: value \: we \: get \\  {(2 + \sqrt{3} ) }^{2}  +  \frac{1}{(2 +  { \sqrt{3)} }^{2} }  \\ 4 + 3  \:  +  \frac{1}{4 + 3}  \\ 7 +   \frac{1}{7}  \\   \frac{49 + 1}{7}  =  \frac{50}{7}

2) the value of √20 ×√5 = √100 = 10

Answered by TrustedAnswerer19
59

Remember, it is your punishment for spamming in my question.

Given:

\bf\displaystyle \int^4_2\frac{\sqrt{x} }{\sqrt{6 - x + x} } dx

To find : Integral

Explanation:

\bf\displaystyle \int^4_2\frac{\sqrt{x} }{\sqrt{6 } } dx

\bf\displaystyle \frac{1}{\sqrt{6 } }\int^4_2\sqrt{x} dx

Do integration

 \int {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1}  + c \\  \\

=\bf\displaystyle\frac{2}{\sqrt{6} } [\frac{x^{\frac{3}{2}}}{3}]

put lower and upper limits

  = \frac{2}{ \sqrt{6} } ( \frac{4 \times 2}{3}  -  \frac{2 \sqrt{2} }{3} ) \\  \\  =  \frac{2}{3 \sqrt{6} } (8 -  2\sqrt{2} ) \\  \\

or

  = \frac{2}{ \sqrt{6} } ( \frac{4 \times 2}{3}  -  \frac{2 \sqrt{2} }{3} ) \\  \\  =  \frac{4}{3 \sqrt{6} } (4 - \sqrt{2} ) \\  \\

Thus,

\bf\displaystyle \int^4_2\frac{\sqrt{x} }{\sqrt{6 - x + x} } dx=\frac{4}{3 \sqrt{6} } (4 - \sqrt{2} )

Hope it helps you.

Similar questions