Math, asked by shreyasmail, 9 months ago

Maths The perimeter of a right angled triangle is 60 cm and its area is 120 cm^2. Find the lengths of its sides. Answer is :10cm, 24 cm and 26 cm

Answers

Answered by Anonymous
23

Answer:

\sf{The \ lengths \ of \ the \ sides \ are \ 24 \ cm,}

\sf{10 \ cm \ and \ 26 \ cm \ respectively.}

Given:

  • The perimeter of a right angled triangle is 60 cm

  • Area of right angled triangle is 120 cm²

Solution:

\sf{Let \ the}

\sf{Side \ 1 = x \ cm,}

\sf{Side \ 2= y \ cm,}

\sf{Hypotenuse=z \ cm.}

\sf{According \ to \ the \ first \ condition.}

\sf{x+y+z=60}

\sf{\therefore{z=60-x-y...(1)}}

\sf{According \ to \ the \ second \ condition.}

\sf{Here, \ x \ is \ perpendicular \ to \ y.}

\sf{Hence, \ x=height \ and \ y=base}

\sf{Area \ of \ triangle=\dfrac{1}{2}\times \ height\times \ base}

\sf{\therefore{\dfrac{xy}{2}=120}}

\sf{\therefore{xy=240...(2)}}

\sf{By \ Pythagoras \ theorem.}

\sf{z^{2}=x^{2}+y^{2}....(3)}

\sf{Substitute \ equation (1) \ in \ equation (3),}

\sf{we \ get}

\sf{(60-x-y)^{2}=x^{2}+y^{2}}

\sf{\therefore{3600+x^{2}+y^{2}-120(x+y)+2xy=x^{2}+y^{2}}}

\sf{\therefore{3600+2xy-120(x+y)=0}}

\sf{\therefore{3600+2xy=120(x+y)...(4)}}

\sf{Substitute \ equation (2) \ in \ equation (4),}

\sf{we \ get,}

\sf{3600+2(240)=120(x+y)}

\sf{\therefore{3600+480=120(x+y)}}

\sf{\therefore{x+y=\dfrac{4080}{120}}}

\sf{\therefore{x+y=34...(5)}}

\sf{By \ identity}

\sf{(a+b)^{2}=(a-b)^{2}+4ab}

\sf{...from \ equations (5) \ and \ (2)}

\sf{(x+y)^{2}=(x-y)^{2}+4xy}

\sf{\therefore{34^{2}=(x-y)^{2}-4(240)}}

\sf{\therefore{(x-y)^{2}=1156-960}}

\sf{\therefore{(x-y)^{2}=196}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{x-y=14...(6)}

\sf{Add \ equations (5) \ and \ (6), \ we \ get}

\sf{x+y=34}

\sf{+}

\sf{x-y=14}

_______________

\sf{2x=48}

\sf{\therefore{x=\dfrac{48}{2}}}

\boxed{\sf{\therefore{x=24}}}

\sf{Substitute \ x=24 \ in \ equation (5), \ we \ get}

\sf{24+y=34}

\sf{\therefore{y=34-24}}

\boxed{\sf{\therefore{y=10}}}

\sf{Substitute \ x=24 \ and \ y=10 \ in \ equation (1),}

\sf{we \ get}

\sf{z=60-24-10}

\boxed{\sf{\therefore{z=26}}}

\sf\purple{\tt{\therefore{The \ lengths \ of \ the \ sides \ are \ 24 \ cm,}}}

\sf\purple{\tt{10 \ cm \ and \ 26 \ cm \ respectively.}}

Attachments:
Answered by nepal2160
1

Answer:

Step-by-step explanation:10cm

24cm

26cm

Similar questions