Math, asked by BrainlyProgrammer, 3 months ago

[Maths]
Topic: Ratio And Proportion

(i) If (4x² + xy) : (3xy - y²) = 12 : 5, find (x + 2y) : (2x + y).

(ii) If y (3x – y) : x (4x + y) = 5 : 12, find (x² + y²) : (x + y)².​

Answers

Answered by Anonymous
93

Answer:

Question no 1 :

i) If (4x² + xy) : (3xy - ) = 12 : 5, find the value of (x + 2y) : (2x + y)

Solution :-

(4x² + xy) : (3xy - ) = 12 : 5

So, we can write as :

4x² + xy/3xy - y² = 12/5

By doing cross multiplication we get,

5(4x² + xy) = 12(3xy - y²)

20x² + 5xy = 36xy - 12y²

20x² + 5xy - 36xy + 12y² = 0

20x² - 31xy + 12y² = 0

By doing middle term break we get,

20x² - (16 + 15)xy + 12y² = 0

20x² - 16xy - 15xy + 12y² = 0

4x(5x - 4y) - 3y(5x - 4y) = 0

(4x - 3y)(5x - 4y) = 0

4x - 3y = 0

4x = 3y

x = 3y/4

And,

5x - 4y = 0

5x = 4y

x = 4y/5

Now,

In case I :

x = 3y/4

Then,

(x + 2y) : (2x + y)

x + 2y/2x + y

{ 3y/4 + 2y}/{2(3y/4) + y}

(3y + 8y)/4 / (6y/4 + y)

11y/4 / 6y + 4y/4

11y/4 / 10y/4

11/10

Again,

In case II :

x = 4y/5

Then,

(x + 2y) : (2x + y)

x + 2y/2x + y

{ 4y/5 + 2y}/{2(4y/5) + y}

(4y + 10y)/5 / (8y/5 + y)

14y/5 / 8y + 5y/5

14y/5 / 13y/5

14/13

The value of (x + 2y) : (2x + y) is 11/10 and 14/13.

______________________

Question No 2 :

ii) If y(3x - y) : x(4x + y) = 5 : 12, then find the value of ( + ) : (x + y)²

Solution :-

y(3x - y) : x(4x + y) = 5 : 12

So, we can write as :

y(3x - y)/x(4x + y) = 5/12

By doing cross multiplication we get,

12y(3x - y) = 5x(4x + y)

36xy - 12y² = 20x² + 5xy

20x² + 5xy - 36xy + 12y² = 0

20x² - 31xy + 12y² = 0

20x² - (16 + 15)xy + 12y² = 0

20x² - 16xy - 15xy + 12y² = 0

4x(5x - 4y) - 3y(5x - 4y) = 0

(4x - 3y)(5x - 4y) = 0

4x - 3y = 0

4x = 3y

x = 3y/4

And,

5x - 4y = 0

5x = 4y

x = 4y/5

Now,

In case I :

x = 3y/4

(x² + y²) : (x + y)²

(x² + y²)/(x + y)²

{ (3y/4)² + y² } / { (3y/4 + y)² }

( 9y²/16 + y²)/(3y + 4y/4 + y²)

(25y²/16) / (7y/4)²

(25y²/16) / 49y²/16

25/49

Again,

In case II :

x = 4y/5

(x² + y²) : (x + y)²

(x² + y²)/(x + y)²

{ (4y/5)² + y² } / { (4y/5 + y)² }

(16y²/25 + y²)/(4y + 5y/5 + y²)

(41y²/25) / (9y/5)²

(41y²/25) / 81y²/25

41/81

The value of ( + ) : (x + y)² is 25/49 and 41/81.

Similar questions