[Maths]
Topic: Ratio And Proportion
(i) If (4x² + xy) : (3xy - y²) = 12 : 5, find (x + 2y) : (2x + y).
(ii) If y (3x – y) : x (4x + y) = 5 : 12, find (x² + y²) : (x + y)².
Answers
Answer:
★ Question no 1 :
i) If (4x² + xy) : (3xy - y²) = 12 : 5, find the value of (x + 2y) : (2x + y)
Solution :-
➲ (4x² + xy) : (3xy - y²) = 12 : 5
So, we can write as :
↦ 4x² + xy/3xy - y² = 12/5
By doing cross multiplication we get,
↦ 5(4x² + xy) = 12(3xy - y²)
↦ 20x² + 5xy = 36xy - 12y²
↦ 20x² + 5xy - 36xy + 12y² = 0
↦ 20x² - 31xy + 12y² = 0
By doing middle term break we get,
↦ 20x² - (16 + 15)xy + 12y² = 0
↦ 20x² - 16xy - 15xy + 12y² = 0
↦ 4x(5x - 4y) - 3y(5x - 4y) = 0
↦ (4x - 3y)(5x - 4y) = 0
↦ 4x - 3y = 0
↦ 4x = 3y
➦ x = 3y/4
And,
↦ 5x - 4y = 0
↦ 5x = 4y
➦ x = 4y/5
Now,
➤ In case I :
⇒ x = 3y/4
Then,
↦ (x + 2y) : (2x + y)
↦ x + 2y/2x + y
↦ { 3y/4 + 2y}/{2(3y/4) + y}
↦ (3y + 8y)/4 / (6y/4 + y)
↦ 11y/4 / 6y + 4y/4
↦ 11y/4 / 10y/4
➠ 11/10
Again,
➤ In case II :
⇒ x = 4y/5
Then,
↦ (x + 2y) : (2x + y)
↦ x + 2y/2x + y
↦ { 4y/5 + 2y}/{2(4y/5) + y}
↦ (4y + 10y)/5 / (8y/5 + y)
↦ 14y/5 / 8y + 5y/5
↦ 14y/5 / 13y/5
➠ 14/13
∴ The value of (x + 2y) : (2x + y) is 11/10 and 14/13.
______________________
★ Question No 2 :
ii) If y(3x - y) : x(4x + y) = 5 : 12, then find the value of (x² + y²) : (x + y)²
Solution :-
➲ y(3x - y) : x(4x + y) = 5 : 12
So, we can write as :
↦ y(3x - y)/x(4x + y) = 5/12
By doing cross multiplication we get,
↦ 12y(3x - y) = 5x(4x + y)
↦ 36xy - 12y² = 20x² + 5xy
↦ 20x² + 5xy - 36xy + 12y² = 0
↦ 20x² - 31xy + 12y² = 0
↦ 20x² - (16 + 15)xy + 12y² = 0
↦ 20x² - 16xy - 15xy + 12y² = 0
↦ 4x(5x - 4y) - 3y(5x - 4y) = 0
↦ (4x - 3y)(5x - 4y) = 0
↦ 4x - 3y = 0
↦ 4x = 3y
➦ x = 3y/4
And,
↦ 5x - 4y = 0
↦ 5x = 4y
➦ x = 4y/5
Now,
➤ In case I :
⇒ x = 3y/4
↦ (x² + y²) : (x + y)²
↦ (x² + y²)/(x + y)²
↦ { (3y/4)² + y² } / { (3y/4 + y)² }
↦ ( 9y²/16 + y²)/(3y + 4y/4 + y²)
↦ (25y²/16) / (7y/4)²
↦ (25y²/16) / 49y²/16
➠ 25/49
Again,
➤ In case II :
⇒ x = 4y/5
↦ (x² + y²) : (x + y)²
↦ (x² + y²)/(x + y)²
↦ { (4y/5)² + y² } / { (4y/5 + y)² }
↦ (16y²/25 + y²)/(4y + 5y/5 + y²)
↦ (41y²/25) / (9y/5)²
↦ (41y²/25) / 81y²/25
➠ 41/81
∴ The value of (x² + y²) : (x + y)² is 25/49 and 41/81.