Math, asked by patelaayushi2624, 11 hours ago

maths topper please help to prove this...​

Attachments:

Answers

Answered by suhail2070
1

Answer:

ANSWER IS 1

Step-by-step explanation:

y =  ({ \cos(x) })^{( \frac{\pi}{2}  - x)}  \\  \\  log_{e}(y)  = ( \frac{\pi}{2}  - x)( log_{e}( \cos(x) )  \\  \\ log_{e}(y) =  \frac{ ( \frac{\pi}{2}  - x)}{ \frac{1}{ log_{e}( \cos(x) ) } }  \:  \\  \\ by \: l \: hospital \: rule \\  \\ log_{e}(y) =  \frac{ - 1}{ \frac{ - 1}{ { log_{e}( \cos(x) ) }^{2} }  \times  -  \sin(x) }  \\  \\ log_{e}(y) =  \sin(x)  { log_{e}( \cos(x) ) }^{2}  \\  \\ log_{e}(y) = ( 1)( log_{e}(( 1 ) ) \\  \\ log_{e}(y) = 0 \\  \\ therefore \:  \:  \: y =  {e}^{0}   \:  \: when \: x \: tends \: to \:  \frac{\pi}{2} \\  \\ y = 1. \\  \\

Similar questions