Math, asked by Abhilav, 5 months ago

Maths Trigonometry Experts Solve This​

Attachments:

Answers

Answered by SuitableBoy
71

{\large{\underline{\underline{\bf{Question:-}}}}}

 \\

Prove that :

 \sf \:  \sqrt{ \dfrac{cosec \: x + 1}{cosec \: x - 1} }  =  \dfrac{cos \: x}{1 - sin \: x}

 \\

{\large{\bf{\underline{\underline{Required\:Solution:-}}}}}

 \\

Take LHS :

 \\

 \colon \rightarrow \sf \:  \sqrt{ \dfrac{cosec \: x + 1}{cosec \: x - 1} }

\\

  • Rationalize the denominator.

\\

 \colon \rightarrow \sf \:  \sqrt{  \dfrac{(cosec \: x + 1)}{(cosec \: x - 1)} \times  \dfrac{(cosec \: x + 1)}{(cosec \: x  +  1)}   }  \\

\\

  • Using a² - b² = (a+b) (a-b)

\\

 \colon \rightarrow \sf \:  \sqrt{ \dfrac{ {(cosec \: x + 1)}^{2} }{ {cosec}^{2} \: x -  {1}^{2}  } }

  \colon \rightarrow \sf \:  \dfrac{(cosec \: x + 1)}{ \sqrt{ {cosec}^{2} \: x - 1 } }

\\

  • Change 1 into cosec² - cot² .

\\

 \colon \rightarrow \sf \:  \dfrac{(cosec \: x + 1)}{ \sqrt{ {cosec}^{2} \: x - ( {cosec}^{2} \: x -  {cot}^{2}  \: x  } }

\\

 \colon \rightarrow \sf \:  \dfrac{(cosec \: x + 1)}{ \sqrt{ \cancel {{cosec}^{2}  \: x}  -  \cancel{ {cosec}^{2} \: x } +  {cot}^{2} \: x }}

\\

 \colon \rightarrow \sf \:  \dfrac{(cosec \: x+ 1)}{ \sqrt{ {cot}^{2} \: x } }

\\

 \colon \rightarrow \sf \:  \dfrac{(cosec \: x + 1)}{cot \: x}

\\

  • Change cosec into \bf\dfrac{1}{sin} &
  • Change cot into \bf\dfrac{cos}{sin}

\\

 \colon \rightarrow \sf \:  \dfrac{ \dfrac{1}{sin \: x} + 1 }{ \dfrac{cos \: x}{sin \: x} }

\\

  • Take LCM

\\

 \colon \rightarrow \sf \:  \dfrac{ \dfrac{(1 + sin \: x)}{ \cancel{sin \: x}} }{ \dfrac{cos \: x}{ \cancel{sin \: x}} }

\\

 \colon \rightarrow \sf \:  \dfrac{1 + sin \:  x}{cos \: x}

\\

  • Multiply the numerator and the denominator by (1-sin x)

\\

 \colon  \rightarrow \sf \:  \frac{(1 + sin \: x)}{cos \: x}  \times  \frac{(1 - sin \: x)}{(1 - sin \: x) }  \\

\\

  • Using (a+b) (a-b) = a² - b²

\\

 \colon \rightarrow \sf \:  \frac{1 -  {sin}^{2}  \: x}{cos \: x(1 - sin \: x)}  \\

\\

  • Change 1 - sin² into cos²

\\

 \colon  \rightarrow \sf \:  \frac{  \cancel{ {cos}^{2}  \: x}}{ \cancel{cos \: x}(1 - sin \: x)}  \\

\\

  \colon \rightarrow \boxed{  \red{ \bf \frac{cos \: x}{1 - sin \: x} }}

So,

L.H.S = R.H.S

Hence proved

 \\  \\

_____________________________

Answered by Anonymous
96

Answer:

\huge\mathcal{\green{Hola!}}

Step-by-step explanation:

To Prove:-

 \huge\sqrt{ \frac{cosec \: x + 1}{cosec \: x - 1} }  =  \frac{cos \: x}{1 - sin \: x}

Trigonometric identities:-

 {sin}^{2} x +  {cos}^{2} x = 1

 {sec}^{2} x -  {tan}^{2} x = 1

 {cosec}^{2} x = 1 +  {cot}^{2} x

Solution:-

L.H.S

  • By rationalising the denominator in the L.H.S we have

\huge \sqrt{ \frac{cosec \: x + 1}{cosec \: x - 1} \times  \frac{cosec \: x  +   1}{cosec \: x + 1}  }  =  \sqrt{ \frac{ {(cosec \: x + 1)}^{2} }{ {cosec}^{2}x - 1 } }

\huge\mathcal{\green{Now,}}

  • we know that cot^2(x) = cosec^2(x) - 1

\huge\mathcal{\green{Therefore,}}

\huge =  >  \sqrt{ \frac{(cosec \: x + 1) {}^{2} }{ {cot}^{2}x } }

\huge =  >  \sqrt({ \frac{ {cosec \: x + 1}^{} }{cot \: x}) {}^{2}  }

\huge =  >  \frac{cosec \: x + 1}{cot \: x}

\huge\mathcal{\green{Now,}}

  • we know that;

cosec \: x \:  =  \frac{1}{sin \: x}  \:  \: and \:  \: cot \: x =  \frac{cos \: x}{sin \: x}

Putting the values, we have;

\huge \frac{ \frac{1}{sin \: x}  + 1 }{ \frac{cos \: x}{sin \: x} }  =  \frac{ \frac{1 + sin \: x}{sin \: x} }{ \frac{cos \: x}{sin \: x} }

・ ➝ 1 + sin x/cos x

Now, by multiplying both the numerator and the denominator with

(1 - sin x)

we have;

・➝ cos x/ 1 - sin x = RHS

As LHS = RHS

Hence, proved.

\huge\mathcal{\green{All \ the \ very \ best!}}

\huge\mathfrak{\red{@MissTranquil}}

\huge\fbox{\orange{be \ brainly}}

__________________________________________________________________________________________

Similar questions