Math, asked by NKMAHADEV, 10 months ago

Maths Trigonometry 【 iii 】

Attachments:

Answers

Answered by sandy1816
6

Answer:

</p><p>{\green{\underline{\underline{\huge{\mathfrak\green{your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:

NKMAHADEV: I didn't got the Question Properly
NKMAHADEV: Can u Plz Expalin it
umiko28: Do you understand the answer or not, tell me first
NKMAHADEV: Partially
NKMAHADEV: Question vi thik se nhi samjha m
umiko28: "if sec theta=x(1)/(4x) then tan theta+sec theta is either 2x or 1/4x " question ye h na
Answered by Anonymous
3

     \huge{\mathtt\: SOLUTION \mapsto }\  \\  \\ \bf\ sec \theta = x +  \frac{1}{4x} \\  \\  \sf\ \implies: {sec}^{2} \theta =  {(x +  \frac{1}{4x} })^{2} \\  \\  \sf\ \implies:  {sec}^{2}\theta =  {x}^{2}  + 2 \times x \times  \frac{1}{4x}  +  { (\frac{1}{4x} })^{2}  \\  \\ \sf\ \implies:{sec}^{2}\theta =  {x}^{2} +   \frac{1}{2}  + \frac{1}{ {16x}^{2} }   \\  \\  \tt{\red{ \bigstar \underline{1 +  {tan}^{2} \theta ={sec}^{2}\theta  }}} \\ \tt{\purple {\bigstar{ \underline{{sec}^{2}  -  1= \boxed{\bf{tan}^{2}\theta}  }}}} \\  \\  \sf\ \implies:  {tan}^{2} \theta =   {x}^{2} +   \frac{1}{2}  + \frac{1}{ {16x}^{2}} - 1\\  \\ \sf\ \implies:{tan}^{2} \theta =  {x}^{2} +  \frac{1}{ {16x}^{2} }  +  \frac{1}{2} - 1    \\  \\  \sf\ \implies:{tan}^{2} \theta =  {(x  -   \frac{1}{4x} )}^{2}    \\  \\  \tt\ \implies: tan \theta  = ± \sqrt{ {(x  -   \frac{1}{4x} })^{2} } \\  \\ \boxed{\tt\ \implies: tan \theta = ± \: x  -   \frac{1}{4x} }   \\  \\   \bf\  \therefore\: tan \theta + sec \theta = x   \:  \: \cancel{-  \frac{1}{4x}} \:  + x   \:  \:  \cancel{+ \frac{1}{4x}}   \\  \\   \boxed{\bf\ \: tan \theta + sec \theta =  \red2 \pink x   \:  \ddot \smile} \\  \\  \bf\  \therefore\: tan \theta + sec \theta =   \cancel{- x}  \:  \: +  \frac{1}{4x}  \:  \:  \cancel{+ x} +  \frac{1}{4x}   \\  \\\bf\ \implies \: tan \theta + sec \theta =   \frac{1 + 1}{4x}  =  \frac{2}{4x} \\  \\\boxed{\bf\ \: tan \theta + sec \theta =  \frac{ \blue1}{ \orange2 \purple{x} } \ddot \smile }

Similar questions