Math, asked by riyasinghsapna13, 5 months ago

matrices bca dk gupta books

Attachments:

Answers

Answered by amitnrw
1

Given :   A=\left[\begin{array}{ccc}2&3&4\\1&2&3\\1&-1&1\end{array}\right]  and  B=\left[\begin{array}{ccc}1&3&2\\-1&1&1\\0&0&3\end{array}\right]

To Find :  A²  and AB

Solution:

A² = A. A

A^2=\left[\begin{array}{ccc}2&3&4\\1&2&3\\1&-1&1\end{array}\right]\left[\begin{array}{ccc}2&3&4\\1&2&3\\1&-1&1\end{array}\right]  

2*2+3*1 +4*1      2*3 + 3*2 + (4*-1)   2*4 + 3*3 +4*1

1*2+2*1 +3*1      1*3 + 2*2 +3*(-1)     1*4 + 2*3 +3*1

1*2+(-1)*1 +1*1      1*3 + (-1)*2 + 1*(-1)   1*4 + (-1)*3 +1*1

A^2=\left[\begin{array}{ccc}11&8&21\\7&4&13\\2&0&2\end{array}\right]  

AB=\left[\begin{array}{ccc}2&3&4\\1&2&3\\1&-1&1\end{array}\right]\left[\begin{array}{ccc}1&3&2\\-1&1&1\\0&0&3\end{array}\right]  

  2*1+3*(-1)+4*0    2*3+3*1+4*0    2*2+3*1+4*3

  1*1+2*(-1)+3*0    1*3+2*1+3*0    1*2+2*1+3*3

  1*1+(-1)*(-1)+1*0      1*3+(-1)*1+1*0 1*2+(-1)*1+1*3

AB=\left[\begin{array}{ccc}-1&9&19\\-1&5&13\\2&2&4\end{array}\right]  

Please post Question one by one

Learn More:

Solving system of equation X-2Y=10, 2X-Y-Z=8, -2Y+Z=7 using ...

brainly.in/question/20090447

x+y+z=1,2x+2y+3z=6,x+4y+9z=3,solve the system of equations by ...

brainly.in/question/25808974

Similar questions