Math, asked by SAB0108, 3 months ago

Matrices - Find A and B

Attachments:

Answers

Answered by gganesha969
2

Answer:

sub B in given equation

we get A=bracket 3 -1

1 19by5

Attachments:
Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:2A + B = \bigg[ \begin{matrix}3& - 4 \\ 2&9 \end{matrix} \bigg] -  -  - (1)

and

\rm :\longmapsto\:A - 2B = \bigg[ \begin{matrix}9&3 \\ 1&1 \end{matrix} \bigg] -  -  - (2)

On multiply equation (1) by 2, we get

\rm :\longmapsto\:4A + 2B = \bigg[ \begin{matrix}6& - 8 \\ 4&18 \end{matrix} \bigg] -  -  - (3)

Now, on adding equation (2) and (3), we get

\rm :\longmapsto\:5A= \bigg[ \begin{matrix}6& - 8 \\ 4&18 \end{matrix} \bigg] + \bigg[ \begin{matrix}9&3 \\ 1&1 \end{matrix} \bigg]

\rm :\longmapsto\:5A= \bigg[ \begin{matrix}6 + 4& - 8 + 18 \\ 4 + 1&18 + 1 \end{matrix} \bigg]

\rm :\longmapsto\:5A= \bigg[ \begin{matrix}10& 10 \\ 5&19 \end{matrix} \bigg]

\bf :\longmapsto\:A= \bigg[ \begin{matrix}2& 2 \\ 1& \dfrac{19}{5}  \end{matrix} \bigg]

On substituting the value of A, in equation (1), we get

\rm :\longmapsto\:\bigg[ \begin{matrix}4& 4 \\ 2& \dfrac{38}{5}  \end{matrix} \bigg]+ B = \bigg[ \begin{matrix}3& - 4 \\ 2&9 \end{matrix} \bigg]

\rm :\longmapsto\:B = \bigg[ \begin{matrix}3& - 4 \\ 2&9 \end{matrix} \bigg] - \bigg[ \begin{matrix}4& 4 \\ 2& \dfrac{38}{5}  \end{matrix} \bigg]

\rm :\longmapsto\:B = \bigg[ \begin{matrix} - 1& - 8 \\ 0& \dfrac{7}{5}  \end{matrix} \bigg]

Hence,

 \purple{\bf :\longmapsto\:A= \bigg[ \begin{matrix}2& 2 \\ 1& \dfrac{19}{5}  \end{matrix} \bigg] }

and

 \purple{\rm :\longmapsto\:B = \bigg[ \begin{matrix} - 1& - 8 \\ 0& \dfrac{7}{5}  \end{matrix} \bigg]}

Additional Information :-

1. Matrix addition of two matrices A and B is possible only when order of both the matrices A and B are same.

2. Matrix subtraction of two matrices A and B is possible only when order of both the matrices A and B are same.

3. Matrix multiplication is defined when number of columns of pre - multiplier is equal to number of rows of post - multiplier.

Similar questions