Math, asked by haemnadhmandadapu, 1 month ago

( matrix 1&3\\ 3&10 matrix )^ -1 =​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\:A = \bigg[ \begin{matrix}1&3 \\ 3&10 \end{matrix} \bigg]

So, We know that,

\boxed{ \bf{ \: {A}^{ - 1} =  \frac{1}{ |A| }  \: adjA \: }}

Let evaluate,

 \red{\rm :\longmapsto\: |A| }

 \red{\rm \:  =  \: \begin{array}{|cc|}\sf 1 &\sf 3  \\ \sf 3 &\sf 10 \\\end{array}}

 \red{\rm \:  =  \: 10 - 9}

 \red{\rm \:  =  \: 1}

 \red{\bf\implies \: |A| = 1 \:  \ne \: 0}

Hence,

 \red{\boxed{ \bf{ \: {A}^{ - 1}  \: exist \: }}}

Now, Let find cofactors.

\rm :\longmapsto\:c_{11} =  {( - 1)}^{1 + 1}(10) = 10

\rm :\longmapsto\:c_{12} =  {( - 1)}^{1 + 2}(3) =  - 3

\rm :\longmapsto\:c_{21} =  {( - 1)}^{2+ 1}(3) =  - 3

\rm :\longmapsto\:c_{22} =  {( - 1)}^{2+ 2}(1) = 1

So,

\rm :\longmapsto\:adjA = \bigg[ \begin{matrix}10& - 3 \\  - 3&1 \end{matrix} \bigg]'

\bf :\longmapsto\:adjA = \bigg[ \begin{matrix}10& - 3 \\  - 3&1 \end{matrix} \bigg]

Hence,

\bf :\longmapsto\: {A}^{ - 1} = \dfrac{1}{1}  \bigg[ \begin{matrix}10& - 3 \\  - 3&1 \end{matrix} \bigg]

\bf :\longmapsto\: {A}^{ - 1} =  \bigg[ \begin{matrix}10& - 3 \\  - 3&1 \end{matrix} \bigg]

Additional Information :-

\rm :\longmapsto\:\boxed{ \bf{ \: {AA}^{ - 1} =  {A}^{ - 1}A = I}}

\rm :\longmapsto\:\boxed{ \bf{ \: | {A}^{ - 1} | =  \frac{1}{ |A| }}}

\rm :\longmapsto\:\boxed{ \bf{ \: |adj \: A|  =  { |A| }^{n - 1}}}

\rm :\longmapsto\:\boxed{ \bf{ \: {(AB)}^{ - 1} =  {B}^{ - 1} {A}^{ - 1}}}

Answered by XxitsmrseenuxX
22

Answer:

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\:A = \bigg[ \begin{matrix}1&3 \\ 3&10 \end{matrix} \bigg]

So, We know that,

\boxed{ \bf{ \: {A}^{ - 1} =  \frac{1}{ |A| }  \: adjA \: }}

Let evaluate,

 \red{\rm :\longmapsto\: |A| }

 \red{\rm \:  =  \: \begin{array}{|cc|}\sf 1 &\sf 3  \\ \sf 3 &\sf 10 \\\end{array}}

 \red{\rm \:  =  \: 10 - 9}

 \red{\rm \:  =  \: 1}

 \red{\bf\implies \: |A| = 1 \:  \ne \: 0}

Hence,

 \red{\boxed{ \bf{ \: {A}^{ - 1}  \: exist \: }}}

Now, Let find cofactors.

\rm :\longmapsto\:c_{11} =  {( - 1)}^{1 + 1}(10) = 10

\rm :\longmapsto\:c_{12} =  {( - 1)}^{1 + 2}(3) =  - 3

\rm :\longmapsto\:c_{21} =  {( - 1)}^{2+ 1}(3) =  - 3

\rm :\longmapsto\:c_{22} =  {( - 1)}^{2+ 2}(1) = 1

So,

\rm :\longmapsto\:adjA = \bigg[ \begin{matrix}10& - 3 \\  - 3&1 \end{matrix} \bigg]'

\bf :\longmapsto\:adjA = \bigg[ \begin{matrix}10& - 3 \\  - 3&1 \end{matrix} \bigg]

Hence,

\bf :\longmapsto\: {A}^{ - 1} = \dfrac{1}{1}  \bigg[ \begin{matrix}10& - 3 \\  - 3&1 \end{matrix} \bigg]

\bf :\longmapsto\: {A}^{ - 1} =  \bigg[ \begin{matrix}10& - 3 \\  - 3&1 \end{matrix} \bigg]

Additional Information :-

\rm :\longmapsto\:\boxed{ \bf{ \: {AA}^{ - 1} =  {A}^{ - 1}A = I}}

\rm :\longmapsto\:\boxed{ \bf{ \: | {A}^{ - 1} | =  \frac{1}{ |A| }}}

\rm :\longmapsto\:\boxed{ \bf{ \: |adj \: A|  =  { |A| }^{n - 1}}}

\rm :\longmapsto\:\boxed{ \bf{ \: {(AB)}^{ - 1} =  {B}^{ - 1} {A}^{ - 1}}}

Similar questions