matrix A=[2 5 ] then det [A²⁰²⁰+2A²⁰¹⁹] is
[1 3]
Answers
Answered by
1
Answer:
Answer
Correct option is
A
1−y
2
−log
∣
∣
∣
∣
∣
∣
2
1+
1−y
2
∣
∣
∣
∣
∣
∣
=x+c
B
1−y
2
−log
∣
∣
∣
∣
∣
∣
1−
1−y
2
1+
1−y
2
∣
∣
∣
∣
∣
∣
=−x+c
Since, the length of tangent
=
∣
∣
∣
∣
∣
∣
∣
y
1+(
dy
dx
)
2
∣
∣
∣
∣
∣
∣
∣
=1⇒y
2
(1+(
dy
dx
)
2
)=1
∴
dx
dy
=±
1−y
2
y
⇒∫
y
1−y
2
dy=±∫xdx
⇒∫
y
1−y
2
dy=±x+c
Substitute y=sinθ⇒dy=cosθdθ
∴∫
sinθ
cosθ
.cosθdθ=±x+c⇒∫
sin
2
θ
cos
2
θ
.sinθdθ=±x+c
Again substitute cosθ=t⇒−sinθdθ=dt
∴∫
1−t
2
t
2
dt=±x+c,⇒∫(1−
1−t
2
1
)dt=±x+c
⇒t−log
∣
∣
∣
∣
∣
1−t
1+t
∣
∣
∣
∣
∣
=±x+c⇒
1−y
2
−log
∣
∣
∣
∣
∣
∣
1−
1−y
2
1+
1−y
2
∣
∣
∣
∣
∣
∣
=±x+c
Similar questions