Math, asked by manognacs28, 7 months ago

Matrix A is given by A=[6 11 2 4] then the determinant of A power 2015 - 6A power 2014
1)2 power 2016
2) (-11)2 power 2015
3)-2 power 2015 ×7
4) (-9)2 power 2014
I need an answer with more clarity and step by step .please don't mention the option blindly​

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

A=\left[\begin{array}{cc}6&11\\2&4\end{array}\right]

\underline{\textsf{To find:}}

\mathsf{|A^{2015}-6A^{2014}|}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{|A|=\left|\begin{array}{cc}6&11\\2&4\end{array}\right|}

\implies\mathsf{|A|=24-22=2}

\mathsf{A-6I=\left[\begin{array}{cc}6&11\\2&4\end{array}\right]-\left[\begin{array}{cc}6&0\\0&6\end{array}\right]}

\mathsf{A-6I=\left[\begin{array}{cc}0&11\\2&-2\end{array}\right]}

\implies\mathsf{|A-6I|=0-22=-22}

\mathsf{Now,}

\mathsf{|A^{2015}-6A^{2014}|}

\mathsf{|A^{2014}(A-6I)|}

\mathsf{=|A^{2014}|\;|A-6I|}

\mathsf{=|A|^{2014}\;|A-6I|}

\mathsf{=2^{2014}\;(-22)}

\mathsf{=2^{2014}\;(-11)(2)}

\mathsf{=2^{2015}\;(-11)}

\mathsf{=(-11)2^{2015}}

\implies\boxed{\mathsf{|A^{2015}-6A^{2014}|=(-11)2^{2015}}}

\underline{\textsf{Answer:}}

\textsf{Option (2) is correct}

Similar questions