Math, asked by SRIVANKUMAR, 6 months ago

matrix , if A =
1² 2² 3²
2² 32 4²
3² 4² 5²
then |Adj A|​

Answers

Answered by shadowsabers03
10

We know that,

\longrightarrow A^{-1}=\dfrac{1}{|A|}\,adj(A)

\longrightarrow adj(A)=|A|A^{-1}

Then,

\longrightarrow |adj(A)|=\Big||A|A^{-1}\Big|

If A is a square matrix of order n,

\longrightarrow |adj(A)|=|A|^n\left|A^{-1}\right|

\longrightarrow |adj(A)|=|A|^{n-1}

Here n=3. So,

\longrightarrow |adj(A)|=|A|^2

Let us find |A|.

\longrightarrow |A|=\left|\begin{array}{ccc}1^2&2^2&3^2\\2^2&3^2&4^2\\3^2&4^2&5^2\end{array}\right|

Performing operations R_2\to R_2-R_1 and R_3\to R_3-R_2,

\longrightarrow |A|=\left|\begin{array}{ccc}1^2&2^2&3^2\\2^2-1^2&3^2-2^2&4^2-3^2\\3^2-2^2&4^2-3^2&5^2-4^2\end{array}\right|

\longrightarrow |A|=\left|\begin{array}{ccc}1&4&9\\3&5&7\\5&7&9\end{array}\right|

Performing operation R_3\to R_3-R_1,

\longrightarrow |A|=\left|\begin{array}{ccc}1&4&9\\3&5&7\\4&3&0\end{array}\right|

Expanding along C_3,

\longrightarrow |A|=9(3\cdot 3-5\cdot 4)-7(1\cdot 3-4\cdot 4)

\longrightarrow |A|=9(9-20)-7(3-16)

\longrightarrow |A|=-9\cdot11+7\cdot13

\longrightarrow |A|=-8

Therefore,

\longrightarrow |adj(A)|=(-8)^2

\longrightarrow\underline{\underline{|adj(A)|=64}}

Similar questions