Math, asked by hady4242, 4 months ago

matrix inversion method
x+y = 75, x-4y = 0​

Answers

Answered by Failboat
9

Answer:

this very simple but you need to have more careful to learn

Step-by-step explanation:

given,

   x+y=75 , x-4y=0

The matrix form of the system is    AX=B

\left[\begin{array}{cc}1&1&\\1&-4\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{cc}75\\0\end{array}\right]  where,

\left[\begin{array}{cc}1&1&\\1&-4\end{array}\right] = A   \left[\begin{array}{c}x\\y\end{array}\right] = X  \left[\begin{array}{cc}75\\0\end{array}\right] = B  

AX=B

post multiply my A^{-1}

(A^{-1}A)X = A^{-1}B

X=A^{-1}B             [\because A^{-1}A = 1]

we need to find A^{-1} so we use formula

A^{-1} = \frac{1}{|A|} (adj A)

|A| = \left|\begin{array}{cc}1&1\\1&-4\end{array}\right|\\ = -4-1\\=-5

adj(A) = \left[\begin{array}{cc}-4&-1\\-1&1\end{array}\right]

so we use A^{-1} formula,

A^{-1} = \frac{1}{-5} \left[\begin{array}{cc}-4&-1\\-1&1\end{array}\right]

we founded A^{-1}

X=A^{-1}B=\frac{1}{-5} \left[\begin{array}{cc}-4&-1\\-1&1\end{array}\right] \left[\begin{array}{cc}75\\0\end{array}\right]

                  =\frac{1}{-5} \left[\begin{array}{ccc}-300\\-75\end{array}\right]

                  =\left[\begin{array}{ccc}\frac{-300}{-5}\\\frac{-75}{-5}\end{array}\right]

              X=\left[\begin{array}{ccc}60\\15\end{array}\right]

         \left[\begin{array}{ccc}x\\y\end{array}\right]=\left[\begin{array}{ccc}60\\15\end{array}\right]

∴ x=60 and y=15

I hope it very useful

All the Best  :-)

Answered by abbasibilal513
0

Answer:

Step-by-step explanation:

X+y=75

x-4y=0

Similar questions