Math, asked by Rajannsh1, 1 year ago

matrix question solved

Attachments:

Answers

Answered by 12Lucy
1

I had solved both the questions...

Hope it is helpful to you..

Attachments:
Answered by hotelcalifornia
0

Step-by-step explanation:

Given:

(i) A=\left[\begin{array}{ccc}2&3&5\end{array}\right]  B=\left[\begin{array}{ccc}1\\2\\3\end{array}\right]

(ii) A=\left[\begin{array}{ccc}2&1&3\\4&1&0\\\end{array}\right]   B=\left[\begin{array}{ccc}1&-1\\0&2\\5&0\end{array}\right]

To find:

(i)  AB

(ii) AB

     BA

Solution:

(i) AB= \left[\begin{array}{ccc}2&3&5\end{array}\right]  \left[\begin{array}{ccc}1\\2\\3\end{array}\right]

   AB_{11}= 2 × 1+3 × 2+5 × 3=2+6+15

∴     AB=23

(ii) AB= \left[\begin{array}{ccc}2&1&3\\4&1&0\\\end{array}\right]  \left[\begin{array}{ccc}1&-1\\0&2\\5&0\end{array}\right]

Here,

AB_{11}=2 × 1+1 × 0+3 × 5=17

AB_{12}=2 × (-1)+1 × 2+3 × 0=0

AB_{21}=4 × 1+1 × 0 + 0 × 5 =4

AB_{22}=4 × (-1)+ 1 × 2+0 × 0=-2

So the matrix becomes,

AB=\left[\begin{array}{ccc}17&0\\4&-2\\\end{array}\right]

Now,

BA= \left[\begin{array}{ccc}1&-1\\0&2\\5&0\end{array}\right] \left[\begin{array}{ccc}2&1&3\\4&1&0\\\end{array}\right]

Here,

BA_{11} =1 × 2+(-1) × 4=-2                        

BA_{12} = 1 × 1  +(-1) × 1=0              

BA_{13}=1 × 3+(-1) × 0=3

BA_{21} =0 × 1+2 × 4=8

BA_{22}=0 × 1 +2 × 1=2

BA_{23}= 0 × 3+2 × 0=0

BA_{31}= 5 × 2+0 × 4=10

BA_{32} =5 ×1 +0 × 1=5

BA_{33} =5 × 3+0 × 0=15

So the matrix becomes,

BA=\left[\begin{array}{ccc}-2&0&3\\8&2&0\\10&5&15\end{array}\right]

Answer:

Hence the answer is (i)  AB=23

(ii) AB=\left[\begin{array}{ccc}17&0\\4&-2\\\end{array}\right]

BA=\left[\begin{array}{ccc}-2&0&3\\8&2&0\\10&5&15\end{array}\right]

Similar questions