Math, asked by shivavuppunuthula, 3 months ago

Maximum and minimum values of sin 2x - cos 2x​

Answers

Answered by mathdude500
0

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{f(x) = sin2x - cos2x} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{maximum \: and \: minimum \: value \: of \: f(x)}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

\begin{gathered}\bf\red{\tt \:   \boxed{\tt \:   (1). \:  - 1 \leqslant sinx \leqslant 1}}\end{gathered}

\begin{gathered}\bf\green{\tt \:   \boxed{\tt \:   (2). \:   sin(x  - y) =sinxcosy - sinycosx }}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\tt \:  \longrightarrow \: f(x) = sin2x - cos2x

\tt \:  \longrightarrow \: multiply \: and \: divide \: by \:  \sqrt{2}

\tt \:  \longrightarrow \: f(x) =  \sqrt{2}  \bigg( \dfrac{1}{ \sqrt{2} } \:  sin2x - \dfrac{1}{ \sqrt{2} } \:  cos2x\bigg)

\tt \:  \longrightarrow \: f(x) =  \sqrt{2}  \bigg(cos \dfrac{\pi}{ 4 } sin2x - sin\dfrac{\pi}{ 4} cos2x\bigg)

\tt \:  \longrightarrow \: f(x) =  \sqrt{2} sin \bigg(2x - \dfrac{\pi}{4} \bigg )

\begin{gathered}\bf\red{Now,}\end{gathered}

\begin{gathered}\bf\red{We \:  know,}\end{gathered}

\tt \:  \longrightarrow \:  - 1 \leqslant sin \bigg(2x - \dfrac{\pi}{4} \bigg ) \leqslant 1

\tt \:  \longrightarrow \: multiply \: by \:  \sqrt{2}

\tt \:  \longrightarrow \:  \purple{ -  \sqrt{2}  \leqslant \:  \sqrt{2} \:   sin \bigg(2x - \dfrac{\pi}{4} \bigg ) \leqslant  \sqrt{2} }

 \green{\begin{gathered}\begin{gathered}\bf Hence -  \begin{cases} &\tt{minimum \: value \:  =  -  \:  \sqrt{2} }  \\  \\ &\tt{maximum \: value \:  =  \:  \sqrt{2} } \end{cases}\end{gathered}\end{gathered}}

Similar questions