Maximum value of ( 7 sin θ + 11 cos θ ) is
Answers
Answered by
1
Answer:
√170
Step-by-step explanation:
we know that the range of an expression of the type a sin θ+ b cos θ from -√(a²+b²) to √(a²+b²).
i.e, -√(a²+b²)≤ (a sin θ+ b cos θ) ≤ √(a²+b²)
therefore,the maximum value of 7 sin θ+11 cos θ would be √(7²+11²) = √170
some additional information:
proof of the above result:
a sin θ+b cos θ
√(a²+b²)× { a sin θ/√(a²+b²) + b cos θ/√(a²+b²)}
[now let us assume that a/√(a²+b²) = sin φ
then, b/√(a²+b²) becomes cos φ]
now the expression becomes,
√(a²+b²) { sin φ sin θ+ cos φ cos θ}
or,√(a²+b²) { sin (φ+θ) }
[we know that -1≤sin θ≤1.]
or, -√(a²+b²) ≤ sin (φ+θ) ≤ √(a²+b²)
[proved]
Similar questions
Science,
5 months ago
Chemistry,
5 months ago
Math,
5 months ago
Computer Science,
11 months ago
Biology,
11 months ago
Biology,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago