Maximum value of sin a + sin b + sin c when a+b+c = 225
Answers
Answered by
0
Answer:
2.897
Explanation:
sina + sinb + sinc = ?
Assuming a,b,c are values in degrees.
Thus, a+b+c = 225° (given)
Maximum value of sine is 1 at 90°
Therefore, sin90° + sin90° + sin(225-90-90)
= 1 + 1 + sin(45°) = 2 + sin45° = 2 + 1/√2 = 2.7071
But if a=b=c, then a=b=c=75°
Finding the values of sina +sinb +sinc = 3sin75° = 2.897
Hence the maximum value is 2.897
Similar questions