maximum value of ㏒x/x
Answers
Answered by
2
Answer:
−
e
1
y=xlogx
diff. both sides w.r.t. x
dx
dy
=logx+
x
x
=1+logx=loge+logx
dx
dy
=logex⟶(1)
Now, to find minima ⇒
dx
dy
=0
log
e
ex=0
⇒ex=1 ⇒ x=
e
1
diff. eqn.(1) w.r.t. x
dx
2
d
2
y
=
ex
1
×e=
x
1
⇒ [
dx
2
d
2
y
]
x=
e
1
=e>0
∴ At x=
e
1
, y is minimum
∴ minimum value of xlogx=
e
1
log
e
1
=
e
1
loge
−1
=−
e
1
loge
=−
e
1
Step-by-step explanation:
Similar questions