Maximum work done when electric dipole rotate in opposite direction that is ______________.
Answers
Answer:
⇢
Acceleration is 2.22m/s
2
\large \dag† Step by step Explanation :-
Let for Earth ;
Mass = M
Radius = R
Now let for planet 'x' ;
Mass = M'
Radius = R'
As per the question :-
✧ Mass of planet 'x' is two times the mass of earth ;
\purple{ \large :\longmapsto \underline { \pmb{\boxed{{\sf M'=2M} }}}}----(1):⟼
M
′
=2M
M
′
=2M
−−−−(1)
✧ Radius of planet 'x' is three times the radius of earth ;
\purple{ \large :\longmapsto \underline { \pmb{\boxed{{\sf R'=3R} }}}}----(2):⟼
R
′
=3R
R
′
=3R
−−−−(2)
❒ We know that acceleration due to gravity is :-
\begin{gathered} \large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{ \blue{ g= \small\frac{GM}{R {}^{2} } }}}} \\ \end{gathered}
★
g=
R
2
GM
where,
G = Universal gravitational constant
M = Mass of planet
R = Radius of planet
Therefore for Earth ;
\begin{gathered}:\longmapsto \rm g= \frac{GM}{R {}^{2} } \\ \end{gathered}
:⟼g=
R
2
GM
and Given in question acceleration due to gravity on Earth is 10 m/s²,
\purple{ \large :\longmapsto \underline {\boxed{{\bf \small\frac{GM}{R {}^{2} } \large = 10 } }}}\small----(3):⟼
R
2
GM
=10
−−−−(3)
Now for planet 'x' ;
Acceleration due to gravity is :
\begin{gathered} \: \: \: \: \rm g'= \frac{GM'}{{(R')}^{2} } \\ \end{gathered}
g
′
=
(R
′
)
2
GM
′
⏩ Putting values of M' and R' from (1) and (2) :
\begin{gathered}:\longmapsto \rm g'= \frac{G(2M)}{ {(3R)^{2}}} \\ \end{gathered}
:⟼g
′
=
(3R)
2
G(2M)
\begin{gathered}:\longmapsto \rm g'= \frac{2GM}{9R {}^{2} } \\ \end{gathered}
:⟼g
′
=
9R
2
2GM
\begin{gathered}:\longmapsto \rm g'= \frac{GM}{R {}^{2} } \times \frac{2}{9} \\ \end{gathered}
:⟼g
′
=
R
2
GM
×
9
2
⏩ Using (3) :
\begin{gathered}:\longmapsto \rm g'=10 \times \frac{2}{9} \\ \end{gathered}
:⟼g
′
=10×
9
2
\begin{gathered}:\longmapsto \rm g'= \frac{20}{9} \\ \end{gathered}
:⟼g
′
=
9
20
\purple{ \large :\longmapsto \underline {\boxed{{\bf g' = 2.22 \: m/ {s}^{2} } }}}:⟼
g
′
=2.22m/s
2
Therefore acceleration due to gravity on the planet 'x' is
\large\underline{\pink{\underline{\frak{\pmb{\text Acceleration = 2.22 \: m/s^2 }}}}}
Acceleration=2.22m/s
2
Acceleration=2.22m/s
2