mean and standard deviation on discrete data
Answers
Step-by-step explanation:
\large\underline{\sf{Solution-}}
Solution−
Given that,
A dealer marks a damaged article at 10% above the cost price and then allows a discount of 10%..
Let assume that Cost Price of damaged article = ₹ 100
As it is given that, dealer marks a damaged article at 10% above the cost price.
So, it means
\begin{gathered}\rm \: Marked\:Price = 100 + 10\% \: of \: 100 \\ \end{gathered}
MarkedPrice=100+10%of100
\begin{gathered}\rm \: Marked\:Price = 100 + \frac{10}{100} \: \times \: 100 \\ \end{gathered}
MarkedPrice=100+
100
10
×100
\begin{gathered}\rm \: Marked\:Price = 100 + 10 \\ \end{gathered}
MarkedPrice=100+10
\begin{gathered}\rm\implies \:Marked\:Price = 110 \\ \end{gathered}
⟹MarkedPrice=110
Now, further given that, dealer allows a discount of 10%.
So, we have
Marked Price of damaged article = ₹ 110
Discount % = 10 %
We know that,
\begin{gathered}\boxed{\rm{ \:Selling\:Price = \frac{(100 - discount \: \%) \times Marked\:Price}{100} \: }} \\ \end{gathered}
SellingPrice=
100
(100−discount%)×MarkedPrice
So, on substituting the values, we get
\begin{gathered}\rm \: Selling\:Price = \dfrac{(100 - 10) \times 110}{100} \\ \end{gathered}
SellingPrice=
100
(100−10)×110
\begin{gathered}\rm \: Selling\:Price = \dfrac{90 \times 11}{10} \\ \end{gathered}
SellingPrice=
10
90×11
\begin{gathered}\rm \: Selling\:Price = 11 \times 9 \\ \end{gathered}
SellingPrice=11×9
\begin{gathered}\rm\implies \:Selling\:Price = 99 \\ \end{gathered}
⟹SellingPrice=99
Now, we have
Cost Price of damaged article = ₹ 100
Selling Price of damaged article = ₹ 99
Since, Selling Price < Cost Price
So, it means there is loss in this transaction.
So,
\begin{gathered}\rm \: Loss\% \: = \: \frac{Cost\:Price - Selling\:Price}{Cost\:Price} \times 100\% \: \\ \end{gathered}
Loss%=
CostPrice
CostPrice−SellingPrice
×100%
\begin{gathered}\rm \: Loss\% \: = \: \frac{100 - 99}{100} \times 100\% \: \\ \end{gathered}
Loss%=
100
100−99
×100%
\begin{gathered}\rm\implies \:Loss\% \: = \: 1 \: \% \\ \end{gathered}
⟹Loss%=1%
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \be{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★Gain=S.P.–C.P.
★Loss=C.P.–S.P.
★Gain%=(
C.P.
Gain
×100)%
★Loss%=(
C.P.
Loss
×100)%
★S.P.=
100
(100+Gain%)or(100−Loss%)
×C.P.