Math, asked by varungeracr7, 21 days ago

mean and standard deviation on discrete data

Answers

Answered by randomkapoor11
0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Solution−

Given that,

A dealer marks a damaged article at 10% above the cost price and then allows a discount of 10%..

Let assume that Cost Price of damaged article = ₹ 100

As it is given that, dealer marks a damaged article at 10% above the cost price.

So, it means

\begin{gathered}\rm \: Marked\:Price = 100 + 10\% \: of \: 100 \\ \end{gathered}

MarkedPrice=100+10%of100

\begin{gathered}\rm \: Marked\:Price = 100 + \frac{10}{100} \: \times \: 100 \\ \end{gathered}

MarkedPrice=100+

100

10

×100

\begin{gathered}\rm \: Marked\:Price = 100 + 10 \\ \end{gathered}

MarkedPrice=100+10

\begin{gathered}\rm\implies \:Marked\:Price = 110 \\ \end{gathered}

⟹MarkedPrice=110

Now, further given that, dealer allows a discount of 10%.

So, we have

Marked Price of damaged article = ₹ 110

Discount % = 10 %

We know that,

\begin{gathered}\boxed{\rm{ \:Selling\:Price = \frac{(100 - discount \: \%) \times Marked\:Price}{100} \: }} \\ \end{gathered}

SellingPrice=

100

(100−discount%)×MarkedPrice

So, on substituting the values, we get

\begin{gathered}\rm \: Selling\:Price = \dfrac{(100 - 10) \times 110}{100} \\ \end{gathered}

SellingPrice=

100

(100−10)×110

\begin{gathered}\rm \: Selling\:Price = \dfrac{90 \times 11}{10} \\ \end{gathered}

SellingPrice=

10

90×11

\begin{gathered}\rm \: Selling\:Price = 11 \times 9 \\ \end{gathered}

SellingPrice=11×9

\begin{gathered}\rm\implies \:Selling\:Price = 99 \\ \end{gathered}

⟹SellingPrice=99

Now, we have

Cost Price of damaged article = ₹ 100

Selling Price of damaged article = ₹ 99

Since, Selling Price < Cost Price

So, it means there is loss in this transaction.

So,

\begin{gathered}\rm \: Loss\% \: = \: \frac{Cost\:Price - Selling\:Price}{Cost\:Price} \times 100\% \: \\ \end{gathered}

Loss%=

CostPrice

CostPrice−SellingPrice

×100%

\begin{gathered}\rm \: Loss\% \: = \: \frac{100 - 99}{100} \times 100\% \: \\ \end{gathered}

Loss%=

100

100−99

×100%

\begin{gathered}\rm\implies \:Loss\% \: = \: 1 \: \% \\ \end{gathered}

⟹Loss%=1%

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \be{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

MoreFormulae

MoreFormulae

★Gain=S.P.–C.P.

★Loss=C.P.–S.P.

★Gain%=(

C.P.

Gain

×100)%

★Loss%=(

C.P.

Loss

×100)%

★S.P.=

100

(100+Gain%)or(100−Loss%)

×C.P.

Similar questions