Math, asked by fenybharucha, 4 months ago

measure angle between line y= 2 and √3x + y + 1 = 0 is​

Answers

Answered by mathdude500
0

\begin{gathered}\begin{gathered}\bf \: Given \: equation \: of \: lines \:  -   \begin{cases} &\sf{y = 2} \\ &\sf{ \sqrt{3} x + y + 1 = 0} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \: Find :-  \begin{cases} &\sf{angle \: between \: lines}  \end{cases}\end{gathered}\end{gathered}

Concept used :-

  • Let us consider two lines having slope m and M having angle θ between them, then angle 'θ' between the lines is given by

\boxed{ \blue{ \:  \rm :  \implies \:tan \theta \:  =   \bigg|\dfrac{M \:  -  \: m}{1 + Mm}  \bigg| }}

\boxed{ \blue{ \:  \rm :  \implies \:slope \: of \: line \:  =  \:  -  \: \dfrac{coefficient \: of \: x}{coefficient \: of \: y} }}

\large\underline\purple{\bold{Solution :-  }}

Given lines are

 \rm :  \implies \:y \:  =  \: 2 \:  -  - (i)

 \rm :  \implies \: \sqrt{3} x + y  + 1 = 0 -  - (ii)

Now,

\boxed{ \blue{ \:  \rm :  \implies \:Slope \: of \: line \: (i),  \: m \:  = 0}}

\boxed{ \blue{ \:  \rm :  \implies \:Slope \: of \: line \: (ii),  \:M  \:  =  -  \sqrt{3} }}

Now,

 \rm :  \implies \:Let \:  \theta \: be \: the \: angle \: between \: the \: lines

So, angle between lines is evaluated as

 \rm :  \implies \:tan\theta \:  =  \:  |\dfrac{  - \sqrt{3}  - 0}{1 + ( -  \sqrt{3}) \times 0 } |

 \rm :  \implies \:tan\theta \: \:  =  \sqrt{3}

\boxed{ \blue{ \:  \rm :  \implies \:\theta \: =  \: \dfrac{\pi}{3} }}

Similar questions