Measure of opposite angle of parallelogram are (3x-2) ° and (50-x)°.Find the measures of its each angle
Answers
Answered by
7
Heya!
---------
➡Given that ,
◾ ( 3x - 2 ) ° and ( 50 - x ) ° are the opposite angles of a parallelogram.
➡Since Opposite angles of a Parallelogram are equal ,
( 3 x - 2 ) = ( 50 - x )
=> 3x + x = 50 + 2
=> 4x = 52
=> x = 13
◾Angles are ,
✨ ( 3 ( 13 ) - 2 ) = 39 - 2 = 37°
✨ ( 50 - 13 ) = 37°
◀Hence each angle measures 37°
-----------------------------------------------------------------------------------------------------
---------
➡Given that ,
◾ ( 3x - 2 ) ° and ( 50 - x ) ° are the opposite angles of a parallelogram.
➡Since Opposite angles of a Parallelogram are equal ,
( 3 x - 2 ) = ( 50 - x )
=> 3x + x = 50 + 2
=> 4x = 52
=> x = 13
◾Angles are ,
✨ ( 3 ( 13 ) - 2 ) = 39 - 2 = 37°
✨ ( 50 - 13 ) = 37°
◀Hence each angle measures 37°
-----------------------------------------------------------------------------------------------------
Answered by
14
Heya !!
First angle = ( 3X - 2 )°
And,
Second angle = ( 50 - X)°
Therefore,
3X - 2 = 50 - X
3X + X = 50 + 2
4X = 52
X = 13°
First angle = 3X - 2 = 3 × 13 - 2 = 39 - 2 = 37°
Second angle = 50 - X = 50 - 13 = 37°
First angle = ( 3X - 2 )°
And,
Second angle = ( 50 - X)°
Therefore,
3X - 2 = 50 - X
3X + X = 50 + 2
4X = 52
X = 13°
First angle = 3X - 2 = 3 × 13 - 2 = 39 - 2 = 37°
Second angle = 50 - X = 50 - 13 = 37°
Similar questions
Math,
7 months ago
Social Sciences,
1 year ago