Chemistry, asked by landerjoe555, 1 day ago

Measure the lengths of the sides of ∆ABC in GeoGebra, and compute the sine and the cosine of ∠A and ∠B. Verify your calculations by finding the sine and cosine of ∠A and ∠B using a calculator.

Answers

Answered by pshardul2007
0

Answer:

angle A =sin o.98 cos=0.32

Explanation:

Sin∠A=0.80

Cos \angle A=0.60Cos∠A=0.60

Sin \angle B =0.60Sin∠B=0.60

Cos \angle B=0.80Cos∠B=0.80

Step-by-step explanation:

Given

I will answer this question using the attached triangle

Solving (a): Sine and Cosine A

In trigonometry:

Sin \theta =\frac{Opposite}{Hypotenuse}Sinθ=

Hypotenuse

Opposite

and

Cos \theta =\frac{Adjacent}{Hypotenuse}Cosθ=

Hypotenuse

Adjacent

So:

Sin \angle A =\frac{BC}{BA}Sin∠A=

BA

BC

Substitute values for BC and BA

Sin \angle A =\frac{8cm}{10cm}Sin∠A=

10cm

8cm

Sin \angle A =\frac{8}{10}Sin∠A=

10

8

Sin \angle A =0.80Sin∠A=0.80

Cos \angle A=\frac{AC}{BA}Cos∠A=

BA

AC

Substitute values for AC and BA

Cos \angle A=\frac{6cm}{10cm}Cos∠A=

10cm

6cm

Cos \angle A=\frac{6}{10}Cos∠A=

10

6

Cos \angle A=0.60Cos∠A=0.60

Solving (b): Sine and Cosine B

In trigonometry:

Sin \theta =\frac{Opposite}{Hypotenuse}Sinθ=

Hypotenuse

Opposite

and

Cos \theta =\frac{Adjacent}{Hypotenuse}Cosθ=

Hypotenuse

Adjacent

So:

Sin \angle B =\frac{AC}{BA}Sin∠B=

BA

AC

Substitute values for AC and BA

Sin \angle B =\frac{6cm}{10cm}Sin∠B=

10cm

6cm

Sin \angle B =\frac{6}{10}Sin∠B=

10

6

Sin \angle B =0.60Sin∠B=0.60

Cos \angle B=\frac{BC}{BA}Cos∠B=

BA

BC

Substitute values for BC and BA

Cos \angle B=\frac{8cm}{10cm}Cos∠B=

10cm

8cm

Cos \angle B=\frac{8}{10}Cos∠B=

10

8

Cos \angle B=0.80Cos∠B=0.80

Using a calculator:

A = 53^{\circ}A=53

So:

Sin(53^{\circ}) =0.7986Sin(53

)=0.7986

Sin(53^{\circ}) =0.80Sin(53

)=0.80 -- approximated

Cos(53^{\circ}) = 0.6018Cos(53

)=0.6018

Cos(53^{\circ}) = 0.60Cos(53

)=0.60 -- approximated

B = 37^{\circ}B=37

So:

Sin(37^{\circ}) = 0.6018Sin(37

)=0.6018

Sin(37^{\circ}) = 0.60Sin(37

)=0.60 --- approximated

Cos(37^{\circ}) = 0.7986Cos(37

)=0.7986

Cos(37^{\circ}) = 0.80Cos(37

)=0.80 --- approximated

Similar questions