Math, asked by kishlayachaurasia, 2 months ago

measures of frustum of cone diameter are 4 and 2 cm and height 14 cm. find the volume of frustum of the cone.​

Answers

Answered by anishamewafarosh
44

Answer:

hi

good evening

have a great day ahead

Answered by Anonymous
84

\large\tt\underline\bold\red{Given :-}

• D1 \dashrightarrow4 cm

• D2 \dashrightarrow 2 cm

• H \dashrightarrow14 cm

\setlength{\unitlength}{1cm}\begin{picture}\linethickness{}\qbezier( - 1, 0)( - 1,0)(1,3)\qbezier(5.2, 0)(5.2,0)(3,3)\qbezier(1, 3)(2,2.5)(3,3)\qbezier(1, 3)(2,3.5)(3,3)\qbezier( - 1, 0)(1.8, 0.8)(5.2,0)\qbezier( - 1, 0)(1.8, - 1)(5.2,0)\qbezier(4.8, 0)( - 1, 0)(5.2,0)\qbezier(3, 3)(1, 3)(3,3)\put(2,0){\dashbox{0.1}(1,3)}\put(2,0){\circle*{0.19}}\put(2,2.99){\circle*{0.19}}\put(1.2,1.3){\bf 14cm}\put(3.2,-1){\bf2cm}\put(2.3,3.4){\bf\large1cm}\end{picture}

\small\underline\bold\blue{Frustum}

____________________________

\large\tt\underline\bold\red{To\:find}

• The Volume of frustum of the cone

\large\red{\underline{{\boxed{\textbf{Formula\: Used}}}}}

• Volume of Frustum of cone

\bullet\:\: \underline{\boxed{\bold{\bf{Volume = \dfrac{1}{3} \times \pi \times h \times [( R_1 )^2+(R_2)^2+ (R_1 \times R_2) }}}}

\huge\tt\underline\orange{Solution}

\implies\:\:\sf{\dfrac{1}{3} \times \dfrac{22}{7} \times 14 [ (2)^2 + (1)^2+(2\times 1)]}

\implies\:\:\sf{\dfrac{22\times 14}{7\times3}\times [ (2)^2 + (1)^2+(2\times 1)]}

\implies\:\:\sf{\dfrac{308}{7\times3}\times [ 4 + 1 +2]}

\implies\:\:\sf{\dfrac{308}{21}\times 7}

\implies\:\:\sf{\dfrac{44}{3}\times 7}

\implies\:\:\sf {102.66\:cm^3}

Similar questions