Math, asked by Anonymous, 6 months ago

Measures of two adjacent angles of a parallelogram are in ratio 4:5. Find the angles. Dont spam​

Answers

Answered by Anonymous
2

Answer:

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Question:-}}\\\\\end{gathered}\end{gathered}</p><p>

5. The measures of two adjacent angles of a parallelogram are in the ratio 4:5. Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered}</p><p>

The measures of two adjacent angles of a parallelogram are in the ratio 4:5.

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered}</p><p>

Find the measure of each of the angles of the parallelogram.

\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered}</p><p>

\text{ \sf suppose the angles be equal to 4x and 5x}

\boxed{ \sf \orange{ we \: have \: ardjacent \: angles \: of \: a \: parallelogram \: = 180}}

\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\: \\ \sf \to \: 4x + 5 x = 180\: \\ \\ \sf \to \: \: \: \: \: \ : \: \: \: \: \:9x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{9} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180} {9} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 20}\\\\\end{gathered}\end {gathered}</p><p></p><p></p><p>

</p><p> \begin{gathered}\begin{gathered}\sf \to \: 4x \\ \sf \to \: 4 \times 20 \\ \sf \to \red{80}\\ \\ \\ \sf \to \: 5x \\ \sf \to \: 5 \times 20 \\ \sf \to \orange{100} \\\end{gathered}\end{gathered}

Similar questions