Mention any two differences between plant cells and cells in butterflies?
Answers
Plant cells have a cell wall, but animals cells do not. Cell walls provide support and give shape to plants. Plant cells have chloroplasts, but animal cells do not. Plant cells usually have one or more large vacuole(s), while animal cells have smaller vacuoles, if any are present.
Answer:
Interactions between herbivorous insects and their host plants are a central component of terrestrial food webs and a critical topic in agriculture, where a substantial fraction of potential crop yield is lost annually to pests. Important insights into plant–insect interactions have come from research on specific plant defences and insect detoxification mechanisms. Yet, much remains unknown about the molecular mechanisms that mediate plant–insect interactions. Here we use multiple genome-wide approaches to map the molecular basis of herbivory from both plant and insect perspectives, focusing on butterflies and their larval host plants. Parallel genome-wide association studies in the cabbage white butterfly, Pieris rapae, and its host plant, Arabidopsis thaliana, pinpointed a small number of butterfly and plant genes that influenced herbivory. These genes, along with much of the genome, were regulated in a dynamic way over the time course of the feeding interaction. Comparative analyses, including diverse butterfly/plant systems, showed a variety of genome-wide responses to herbivory, as well as a core set of highly conserved genes in butterflies as well as their host plants. These results greatly expand our understanding of the genomic causes and evolutionary consequences of ecological interactions across two of nature’s most diverse taxa, butterflies and flowering plants.
Download PDF
Main
Butterflies and moths, and the host plants that their larvae feed on, comprise two of the largest groups of species on earth, the Lepidoptera and Angiosperms. The extreme diversity of these two groups has arisen from the co-evolutionary interactions between them, wherein evolution proceeded via reciprocal adaptations as each clade evolved in response to changes in the other1,2. A seminal study in this field3 used the diffuse evolutionary relationships among butterflies and their host plants to formally introduce the concept of co-evolution. In the 50 years since that study3, research on the molecular basis of herbivory between butterflies and their host plants has revealed important insights into specific chemicals and defence pathways usedby plants, such as furanocoumarins, glucosinolates and cardenolides4. Research on butterflies, in turn, has revealed specific genes and gene families involved in host plant detoxification, such as cytochrome P450 enzymes5,6, the nitrile-specifier protein of pierid butterflies7 and the Na+/K+-ATPase of the monarch butterfly8. Yet, despite these important advances, our understanding of the molecular genetic basis of these co-evolutionary interactions remains limited. Genomic approaches, including genome-wide association (GWA) studies and transcriptomics, provide a means to move beyond candidate genes and pathways to uncover the molecular determinants of this fundamental ecological interaction in an unbiased way9,10. Here we use these methods in a varieties of butterflies and their respective host plant to uncover the genetic basis of herbivory.