mention two types of interaction
Answers
Answered by
1
1.DIPOLE - DIPOLE INTERACTION.
2. DIPOLE -INDUCED -DIPOLE INTERACTION.
2. DIPOLE -INDUCED -DIPOLE INTERACTION.
Answered by
0
A Design-Theory View
Meredith Davis has argued that interaction is not the special province of computers alone. She points out that printed books invite interaction and that designers consider how readers will interact with books. She cites Massimo Vignelli’s work on the National Audubon Society Field Guide to North American Birds as an example of particularly thoughtful design for interaction [1].
Richard Buchanan shares Davis’s broad view of interaction. Buchanan contrasts earlier design frames (a focus on form and, more recently, a focus on meaning and context) with a relatively new design frame (a focus on interaction) [2]. Interaction is a way of framing the relationship between people and objects designed for them—and thus a way of framing the activity of design. All man-made objects offer the possibility for interaction, and all design activities can be viewed as design for interaction. The same is true not only of objects but also of spaces, messages, and systems. Interaction is a key aspect of function, and function is a key aspect of design.
Davis and Buchanan expand the way we look at design and suggest that artifact-human interaction be a criterion for evaluating the results of all design work. Their point of view raises the question: Is interaction with a static object different from interaction with a dynamic system?
An HCI View
Canonical models of computer-human interaction are based on an archetypal structure—the feedback loop. Information flows from a system (perhaps a computer or a car) through a person and back through the system again. The person has a goal; she acts to achieve it in an environment (provides input to the system); she measures the effect of her action on the environment (interprets output from the system—feedback) and then compares result with goal. The comparison (yielding difference or congruence) directs her next action, beginning the cycle again. This is a simple self-correcting system—more technically, a first-order cybernetic system.
In 1964 the HfG Ulm published a model of interaction depicting an information loop running from system through human and back through the system
Meredith Davis has argued that interaction is not the special province of computers alone. She points out that printed books invite interaction and that designers consider how readers will interact with books. She cites Massimo Vignelli’s work on the National Audubon Society Field Guide to North American Birds as an example of particularly thoughtful design for interaction [1].
Richard Buchanan shares Davis’s broad view of interaction. Buchanan contrasts earlier design frames (a focus on form and, more recently, a focus on meaning and context) with a relatively new design frame (a focus on interaction) [2]. Interaction is a way of framing the relationship between people and objects designed for them—and thus a way of framing the activity of design. All man-made objects offer the possibility for interaction, and all design activities can be viewed as design for interaction. The same is true not only of objects but also of spaces, messages, and systems. Interaction is a key aspect of function, and function is a key aspect of design.
Davis and Buchanan expand the way we look at design and suggest that artifact-human interaction be a criterion for evaluating the results of all design work. Their point of view raises the question: Is interaction with a static object different from interaction with a dynamic system?
An HCI View
Canonical models of computer-human interaction are based on an archetypal structure—the feedback loop. Information flows from a system (perhaps a computer or a car) through a person and back through the system again. The person has a goal; she acts to achieve it in an environment (provides input to the system); she measures the effect of her action on the environment (interprets output from the system—feedback) and then compares result with goal. The comparison (yielding difference or congruence) directs her next action, beginning the cycle again. This is a simple self-correcting system—more technically, a first-order cybernetic system.
In 1964 the HfG Ulm published a model of interaction depicting an information loop running from system through human and back through the system
Similar questions