Math, asked by educationmaster37, 10 months ago

mere pyare brainly vasiyo yh question kro do yrr❤️❤️​

Attachments:

Answers

Answered by Vishal101100
0

Answer:

see attachment..

HOPE IT HELPS......

Attachments:
Answered by Anonymous
11

AnswEr :

\:\bullet\:\sf\ Let \: \alpha, \beta and \gamma \: be \: the \: zeroes \: of \: polynomial

 \rule{100}1

\underline{\bigstar\:\textsf{According \: to \: the \: question\: now;}}

\normalsize\mathbb{\underline{SUM \: OF \: ZEROES : }}

\normalsize\dashrightarrow\sf\ \alpha + \beta + \gamma = \frac{-b}{a}

\normalsize\dashrightarrow\sf\frac{2}{1}  = \frac{-b}{a}

\normalsize\mathbb{\underline{PRODUFT \: OF \: ZEROES \: TAKEN \: TWO \: AT \: A \: TIME : }}

\normalsize\dashrightarrow\sf\ \alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a}

\normalsize\dashrightarrow\sf\frac{-7}{1} = \frac{c}{a}

\normalsize\mathbb{\underline{ PRODUCT \: OF \: ZEROES : }}

\normalsize\dashrightarrow\sf\ \alpha\beta\gamma = \frac{-d}{a}

\normalsize\dashrightarrow\sf\frac{-14}{1} = \frac{-d}{a}

 \rule{100}1

\normalsize\sf\ From \: this \: we \: get :

\:\bullet\:\sf\ a = 1

\:\bullet\:\sf\ b = -2

\:\bullet\:\sf\ c = -7

\:\bullet\:\sf\ d = 14

 \rule{100}1

\normalsize\sf\ Now, \: the \: polynomial \: is :

\normalsize\star{\boxed{\sf{ P(x) = ax^3 + bx^2 + cx + d }}}

\scriptsize\sf{ \: \: \: \: \: \: \: \: \: \dag\ Block \: the \: values\: in \: available \: data}

\normalsize\dashrightarrow\sf\ P(x) = 1(x^3) + (-2)(x^2) + (-7)(x) + 14

\normalsize\dashrightarrow\sf\ P(x) = x^3 - 2x^2 - 7x + 14

\normalsize\dashrightarrow{\boxed{\sf \blue{ P(x) = x^3 - 2x^2 - 7x + 14}}}

Similar questions