Math, asked by hahahawywywyw, 11 months ago

Merhaba plzzzz solve neatly​

Attachments:

Answers

Answered by rishu6845
7

\bold{To \: prove} =  >  \\  {tan}^{ - 1} ( \dfrac{1 - x}{1 + x} ) -  {tan}^{ - 1} ( \dfrac{1 - y}{1  + y} ) =  {sin}^{ - 1} (  \: \dfrac{y - x}{ \sqrt{1 +  {x}^{2} } \sqrt{1 +  {y}^{2} }  } \:  )

{Concept \: used   \\1) {tan}^{ - 1} x  -  {tan}^{ - 1} y =  {tan}^{ - 1} (  \: \dfrac{x - y}{1 + xy}  \: )}

2) \: if \:   \\ {tan}^{ - 1} ( \dfrac{y + x}{1 - xy} ) =   \alpha

 =  > tan \alpha  =  \dfrac{y + x}{1 - xy}

 =  > cot \alpha  =  \dfrac{y + x}{1 - xy}

 =  >  {cot}^{2}   \alpha  =  \dfrac{(y + x)^{2} }{ {(1 - xy)}^{2} }

 =  >  {cosec}^{2}  \alpha  - 1 =  \dfrac{ {(x + y)}^{2} }{ {(1 - xy)}^{2} }

 =  >  {cosec}^{2}  \alpha  = 1 \:  +  \dfrac{ {(x + y)}^{2} }{ {(1 - xy)}^{2} }

 =  >  {cosec}^{2}  \alpha  =  \dfrac{ {(x + y)}^{2}  +  {(1 - xy)}^{2} }{ {(1 - xy)}^{2} }

 =  >  {cosec}^{2}  \alpha  =  \dfrac{ {x}^{2} +  {y}^{2} + 2xy + 1 +  {x}^{2}  {y}^{2}  - 2xy  }{(1 - xy) ^{2} }

 =  >  {cosec}^{2}  \alpha  =  \dfrac{ {x}^{2} +  {y}^{2} + 2xy + 1 +  {x}^{2}  {y}^{2}  - 2xy  }{(1 - xy) ^{2} }

 =  >  {cosec}^{2}  \alpha  =  \dfrac{1 +  {x}^{2} +  {y}^{2}  +  {x}^{2}  {y}^{2}  }{ {(1 - xy)}^{2} }

 =  >  {cosec}^{2}  \alpha  =  \dfrac{1 +  {x}^{2} +  {y}^{2}(1 +  {x}^{2} )  }{ {(1 - xy)}^{2} }

 =  >  {cosec}^{2}  \alpha  =  \dfrac{(1 +  {x}^{2}) \: (1 +  {y}^{2})  }{ {(1 - xy)}^{2} }

 =  >  {sin}^{2}  \alpha  =  \dfrac{ {(1 - xy)}^{2} }{(1  +  {x}^{2} ) \: (1 +  {y}^{2}) }

 =  > sin \alpha  =  \dfrac{(1 - xy)}{ \sqrt{1 +  {x}^{2} }  \sqrt{1 +  {y}^{2} } }

 =  >  \alpha  =  {sin}^{ - 1}  \dfrac{(1 - xy)}{ \sqrt{1 +  {x}^{2} }  \sqrt{1 +  {y}^{2} } }

 =  >\boxed{\bold { {tan}^{ - 1} ( \dfrac{y + x}{1 - xy} ) =  {sin}^{ - 1} ( \dfrac{1 - xy}{ \sqrt{1 +  {x}^{2} } \sqrt{1 +  {y}^{2} }  } )}}

we \: use \: this \: relation \: later

\bold{Solution} =  >   LHS \\  {tan}^{ - 1} ( \dfrac{1 - x}{1 + x} ) - {tan}^{ - 1} ( \dfrac{1 - y}{1 + y} )

 =  {tan}^{ - 1} ( \dfrac{1 - x}{1 + (1) \: (x)} ) -  {tan}^{ - 1} ( \dfrac{1 - y}{1 +  \: (1) \: (y)} )

let \: x \:  = tan \beta  \:  \:  =  >   \beta  = tan ^{ - 1}x \\ y = tan \gamma  =  >  \gamma  =  {tan}^{ - 1}  y  \\ =   {tan}^{ - 1} ( \:  \dfrac{tan \dfrac{\pi}{4}  - tan \beta }{1 + tan \dfrac{\pi}{4} tan \beta } \:  ) \:  -  {tan}^{ - 1} ( \:  \dfrac{tan \dfrac{\pi}{4}  - tan \gamma }{1 + tan \dfrac{\pi}{4}tan \gamma  }  \: )

 =  >  {tan}^{ - 1}  \: tan \: ( \dfrac{\pi}{4}  -  \beta ) -  {tan}^{ - 1}  \: tan( \dfrac{\pi}{4}  -  \gamma )

 =  \dfrac{\pi}{4}  -  \beta  - ( \dfrac{\pi}{4}  -  \gamma )

 =  \dfrac{\pi}{4}  -  \beta  -  \dfrac{\pi}{4}  +  \gamma

 =  \gamma  \:  -  \:  \beta

 =  {tan}^{ - 1} y \:  -  \:  {tan}^{ - 1}x

 =  {tan}^{ - 1}  \dfrac{y + x}{1 - xy}

applying \: abov e \: relation \: we \: get

 =  {sin}^{ - 1} ( \:  \dfrac{1 - xy}{ \sqrt{1 +  {x}^{2} }  \sqrt{1 +  {y}^{2} } }  \: )

 = RHS

Answered by rumeysa7061
3

waayy türk umarum öylesindir

neyse cok geç simdi görüşürüz

Similar questions