Math, asked by vipul1011, 1 year ago

metallic sphere of radius 6cm 8cm and 10cm respectively are melted and recast into a single solid sphere find the surface area of solid sphere formed

Answers

Answered by gurleenkaurbatra168
6

Answer:

1808.64cm²

Step-by-step explanation:

4/3π [r1³+r2³+r3³] =4/3πR³

4/3 and π cancel

6³+8³+10³= R³

216+512+1000=R³

1728=R³

R=12cm

surface area= 4πr²

taking π=3.14

4×314×12×12/100

⇒1808.64cm²

Answered by suchitrasenthil03
3

Answer:

1808.64 cm²

Step-by-step explanation:

r₁ = 6 cm

r₂ = 8cm

r₃ = 10cm

Let the radius of the new sphere formed be R and its volume of V

The volume of a sphere = 4/3 πr³

Since the spheres are melted and recast into a single solid sphere,

Volume of the new sphere = Sum of the volume of the three spheres

                                      V     = V₁ + V₂ + V₃

                               4/3 π R³ = 4/3 πr₁³  + 4/3π r₂³  +4/3 r₃³

                                      R³    = r₁³ + r₂³ + r₃³

                                      R³    = 6³ + 8³ + 10³

                                      R³    = 216 + 512 + 1000

                                      R³    = 1728

                                      R     = 12cm

Surface area of a sphere = 4 π r²

                                         = 4 × 3.14 × 12²

                                         =1808.64 cm²

⇒The surface area of the solid sphere formed is 1808.64 cm²

Similar questions