Math, asked by varunraj38, 21 days ago

Metallic spheres of radii 6 cm, 8 cm and 10 cm respectively, are melted to form a single solid sphere. Find the radius of the resulting sphere.​

Answers

Answered by Anonymous
178

QuestioN

  • Metallic spheres of radii 6 cm, 8 cm and 10 cm respectively, are melted to form a single solid sphere. Find the radius of the resulting sphere.

\:

\pmb{\mathcal{Given}}\begin{cases}\sf{\:\succ\:Radius,\:(r_{1})_{(1^{st}\:sphere)}\:=\:6\:cm}&\\ \frak {\:\:Radius,\:(r_{2})_{(2^{nd}\:sphere)}\:=\:8\:cm}&\\ \sf{\:\succ\:Radius,\:(r_{3})_{(3^{rd}\:sphere)}\:=\:10\:cm}\end{cases}

\:

\normalsize{\underline{\pmb{\mathcal{To\:find,}}}}

  • Radius of the sphere so formed will be ?

\:\:\:\:\:\:\:\:───────────────────

\:

{\bold \bullet\: { \underline{\small{Let\:the\: radius\:of\:the\: resulting\: sphere\:be\:r }}}}

\sf {\large\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \curvearrowright}

\big| \sf The \:object \:formed\: by\: recasting\: these \: \:&\\ \sf \:\:spheres\:will\: be\: same\: in \:volume \:as\: the\: sum\: &\\ \sf of\: the\: volumes\: of\:these\:spheres.\big|

\:

\normalsize{\underline{\pmb{\mathcal{Now, }}}}

\:\:\:\:\dag \small{\underline{\boxed{\sf{Vol.\:of\:3\: spheres =\frak{\red{Vol.\:of\: resulting\:sphere}}}}}}

\:

\sf \:\:\:\:\:\:\:\:\:\:\nrightarrow\: \bf\dfrac{4}{3} \pi \bigg[{r_1}^3+{r_2}^3+{r_3}^3 \bigg]\:=\:\bf\dfrac{4}{3} \pi r^{3}

\:

\:

\sf \:\:\:\:\:\:\:\:\:\:\twoheadrightarrow\:\cancel{\bf\dfrac{4}{3} \pi } \bigg[ 6^3\:+\:8^3\:+\:10^3 \bigg]\:=\:\cancel{\bf\dfrac{4}{3} \pi} r^{3}

\:

\:

\sf \:\:\:\: \looparrowright\:\: r^3\:=\:216\:+\:512\:+\:1000\:=\:1728

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\small{\underline{\pmb{\mathcal{\green{r\:=\:12\:cm }}}}}

\:

Therefore, the radius of the sphere so formed will be 12 cm.

Answered by Anonymous
16

\huge \fbox \orange{Answer✪}

 \textbf{Given: }  \:  R_{1} = 6 \: cm ,R_{2} = 8 \: cm,R_{3} = 10 \: cm

 \textbf{To Find: } \text{Radius of Resulting sphere}

\sf \colorbox{skyblue} {Solution: }

\text{Volume \: 2}  =  \frac{4}{3}\pi {R_{1}}^{3}

⇒ \frac{4}{3}  \times  \frac{22}{7}  \times 6 \times 6 \times 6 = 904.78 \:  {cm}^{3}

\text{Volume \: 2}  =  \frac{4}{3}\pi {R_{2}}^{3}

⇒ \frac{4}{3}  \times  \frac{22}{7}  \times  {8}^{3}  = 2144.66 \:  {cm}^{3}

\text{Volume \: 3}  =  \frac{4}{3}\pi {R_{3}}^{3}

⇒ \frac{4}{3}  \times  \frac{22}{7}  \times  {10}^{3}  = 4188.88.80 \:  {cm}^{3}

 \textbf{Total Volume:}

 ⇒904.78 + 2144.66 + 4188.80

 = 7238.23 \:  {cm}^{3} →(1)

∴\text{Volume of resulting sphere}  =  \frac{4}{3}\pi {r}^{3}

⇒7238.23 =  \frac{4}{3}  \times  \frac{22}{7}  \times  {r}^{3}

⇒ {r}^{3}  =  \frac{7238.23 \times 3 \times 4}{4 \times 22}  = 1724.30

\fbox{Hence Redius  is 12 cm}

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙﷻ}

Similar questions