Math, asked by khatungulnaj934, 7 months ago

Metallic spheres of radii 6cm, 8cm and 10cm respectively are melted to form a

solid sphere. Find the radius of the resulting sphere.

Answers

Answered by Anonymous
18

Answer:

metallic spheres of raddi 6cm, 8cm, and 10cm

if they are melted and they formed into a single sphere then all the raddibof sphere gets added

∴new raddi of sphere = 6+8+10=24

please like and rate me

Answered by MaIeficent
54

Step-by-step explanation:

Radius of 1st sphere (r₁) = 6cm

Radius of 2nd sphere (r₂) = 8cm

Radius of 3rd sphere (r₃) = 10cm

Let the radius of the resulting sphere be " r "

Volume of 1st sphere = \dfrac{4}{3} \pi (r_{1})^{2}

\: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:   = \dfrac{4}{3} \pi \times 6^{3}

\: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:    = \dfrac{4}{3} \pi \times 216

Volume of 2nd sphere = \dfrac{4}{3} \pi (r_{2})^{2}

\: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{4}{3} \pi \times 8^{3}

\: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  \:  \:  \:   = \dfrac{4}{3} \pi \times 512

Volume of 3rd sphere = \dfrac{4}{3} \pi (r_{3})^{2}

\: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \dfrac{4}{3} \pi \times 10^{3}

\: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:    = \dfrac{4}{3} \pi \times 1000

Volume of resulting sphere = Sum of volumes of the three spheres

\rm \dashrightarrow  \dfrac{4}{3}\pi r^{3} = \dfrac{4}{3} \pi \times 216 + \dfrac{4}{3} \pi \times 512  + \dfrac{4}{3} \pi \times 1000

\rm\dashrightarrow \dfrac{4}{3}\pi r^{3} = \dfrac{4}{3}\pi \big( 216 +  512  + 1000\big)

\dashrightarrow r^{3} = 216 + 512 + 1000

\dashrightarrow r^{3} = 1728

\dashrightarrow r=  \sqrt[3]{1728}

\dashrightarrow r= 12cm

\underline{\boxed{\rm \therefore Radius \: of \: the \: resulting \: sphere = 12cm}}

Similar questions