Math, asked by meena2625, 1 year ago

metallic spheres of radii 6cm.8cm and 10cm respectively are melted to form a single solid sphere

Answers

Answered by jay4274
6
Volume conserved so on both side 4/3 pie will be cancelled
Attachments:
Answered by ᴍσσɳʅιɠԋƚ
3

Appropriate Question:

Metallic Spheres of radii 6 cm , 8 cm and 10 cm respectively are melted to form a single sphere . find yhe rafius of the resulting sphere .

Solution :

Radii of given spheres are 6 cm , 8 cm and 10 cm .

 \sf{}Radius  \: of  \: Sphere_{(1)} = r_{(1)} \\  \\ \sf{}Radius  \: of  \: Sphere_{(2)} = r_{(2)} \\  \\ \sf{}Radius  \: of  \: Sphere_{(3)} = r_{(3)} \\  \\ \sf{}Radius  \: of  \: Sphere_{(4)} = r_{(4)}

Now , volume of resulting sphere = sum of the volumes of given spheres.

 \sf{}r_{1}  + r_{2}  + r_{3}  = r_{4}

 \sf{}  \dfrac{4}{3} \pi \: r_{(4)}  ^{3}  =  \dfrac{4}{3} \pi \: r_{(1)}  ^{3}  + \dfrac{4}{3} \pi \: r_{(2)}  ^{3}  + \dfrac{4}{3} \pi \: r_{(3)}  ^{3}   \\  \\   \sf{}\sf{}  \dfrac{4}{3} \pi \:  r_{(4)}  ^{3}  =  \dfrac{4}{3} \pi \: (6) ^{3}  + \dfrac{4}{3} \pi \: (8)  ^{3}  + \dfrac{4}{3} \pi \: (10)  ^{3}   \\  \\ \sf{} r_{(4)} ^{3}  = 216 + 512 + 1000 \\  \\  \sf{}r_{(4)}  ^{3}  = 1728 \\  \\  \sf{} \:r_{(4)}  = 12 \: cm

Therefore , radius of the resulting sphere is equals to 12 cm.

 \\  \\

\underline{  \underline{ \sf{ \red{ \bold{ more \: Formulas}}}}} \\  \\  \:  \sf{}voume \: of \: cube \:  =  {a}^{3}  \\  \\  \sf{}volume \: of \: cylinder = \pi {r}^{2} h \\  \\  \sf{}volume \: of \: cone  =  \frac{1}{3} \pi \:  {r}^{2} h \\  \\  \sf{}volume \: of \: sphere \:  =  \frac{4}{3} \pi \:  {r}^{3}  \\  \\ \sf{} volume \: of \: hemisphere =  \frac{2}{3} \pi {r}^{3}

Similar questions