Math, asked by balharadevraj277, 5 months ago

milk powder comes in a cylindrical container whose base has a diameter of 14cm and height of 20 cm find its volume.

Answers

Answered by SarcasticL0ve
126

\frak{Given} \begin{cases} & \sf{Base\:Diameter\:of\: Cylindrical\:container = \bf{14\:cm}}  \\ & \sf{Base\:radius\:of\: Cylindrical\:container = \bf{7\:cm}} \\ & \sf{Height\:of\: cylindrical\:container = \bf{20\:cm}} \end{cases}\\ \\

To find: Volume of milk powder in container?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • Volume of Milk powder = Volume of container

⠀⠀⠀

★ Now, Finding Volume of cylindrical container,

⠀⠀⠀

\dag\;{\underline{\frak{Volume\:of\:cylinder\:is\:given\:by}}}\\ \\

\star\;{\boxed{\sf{\pink{Volume_{\;(cylinder)} = \pi r^2 h}}}}\\ \\

where,

  • r & h are radius and height of cylinder respectively.

⠀⠀⠀⠀

:\implies\sf Volume_{\;(container)} = \dfrac{22}{7} \times 7 \times 7 \times 20\\ \\

:\implies\sf Volume_{\;(container)} = \dfrac{22}{ \cancel{7}} \times \cancel{7} \times 7 \times 20\\ \\

:\implies\sf Volume_{\;(container)} = 22 \times 7 \times 20\\ \\

:\implies\sf Volume_{\;(container)} = 154 \times 20\\ \\

:\implies{\underline{\boxed{\frak{\purple{Volume_{\;(container)} = 3080\:cm^3}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Volume\:of\:milk\:powder\:in\:container\:is\: \bf{3080\:cm^3}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:Formula\:Related\:to\:cylinder\:\bigstar}}}}\\ \\

  • \sf Area\:of\:base\:of\:cylinder = \bf{\pi r^2}

  • \sf Total\:Surface\:area\:of\:cylinder = \bf{2 \pi r(r + h)}

  • \sf Curved\:Surface\:area\:of\:cylinder = \bf{2 \pi rh}

  • \sf Volume\:of\:cone = \bf{ \dfrac{1}{3} \times Volume_{\:(cylinder)}}

Rythm14: Good ❤
BrainlyIAS: Great :-) ♥
Answered by Anonymous
305

A N S W E R :

  • Volume of the milk container is 3080 cm³.

\underline{\underline{\sf  \bigstar\qquad Given :\qquad \bigstar}} \\

\frak{\pink{We  \: have}}\begin{cases} \textsf{\red{Base diameter of cylindrical container =  \textbf{14 cm}}}\\ \textsf{\purple{Height of the cylindrical container = \textbf{ 20 cm}}}\end{cases} \\

\underline{\underline{\sf  \bigstar\qquad To \:Find:\qquad \bigstar}} \\

We have to find the volume of the cylindrical container.

\underline{\underline{\sf  \bigstar\qquad Solution : \qquad \bigstar}} \\

\ddag \: \underline{\frak{To  \: find \:  the \:  volume  \: of \:  cylindrical  \: tank  \: first  \: we \:  have \:  to \:  find \:  the \:  base \:  radius \:  of  \: cylindrical \:   \: container}} \:  \ddag \\  \\

:\implies \sf Base  \: radius  \: of  \: cylindrical \:  container = \dfrac{Base \:  diameter  \: of  \: cylindrical  \: container}{2} \\  \\  \\

:\implies \sf Base  \: radius  \: of  \: cylindrical \:  container = \dfrac{14}{2} \\  \\  \\

:\implies  \underline{ \boxed{\sf Base  \: radius  \: of  \: cylindrical \:  container =7 \: cm}}\\  \\  \\

\therefore\:\underline{\textsf{The base radius of cylindrical container is \textbf{7 cm}}}. \\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

\ddag \: \underline{\frak{Now,  let's \:  find  \: the  \: volume  \: of  \: cylindrical  \: container :}} \:  \ddag \\  \\

\dashrightarrow\:\:\sf Volume \:  of \:  cylindrical  \: container = \pi r^2 h \\  \\  \\

\dashrightarrow\:\:\sf Volume \:  of \:  cylindrical  \: container =  \dfrac{22}{7}   \times 7 \times 7  \times 20 \\  \\  \\

\dashrightarrow\:\:\sf Volume \:  of \:  cylindrical  \: container =  22\times 7  \times 20 \\  \\  \\

\dashrightarrow\:\: \underline{ \boxed{\sf Volume \:  of \:  cylindrical  \: container =  3080 \:  {cm}^{3}}}  \\  \\  \\

\therefore\:\underline{\textsf{The volume of cylindrical container is \textbf{3080 cm$^{\text3}$}}}.  \\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\underline{\sf  \bigstar\qquad Some \:  important \: formulas \:  related \:  to  \: it :\qquad \bigstar}} \\

\boxed{\bigstar{\sf \ Cylinder :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cylinder= \pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ cylinder= 2\pi r h\\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ cylinder= 2\pi r (h+r)

\boxed{\bigstar{\sf \ Cone :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cone= \dfrac{1}{3}\pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Cone = \pi r l \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Cone = \pi r (l+r) \\ \\ \\ \sf {\textcircled{\footnotesize4}} Slant \ Height \ of \ cone (l)= \sqrt{r^2+h^2}

\boxed{\bigstar{\sf \ Hemisphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Hemisphere= \dfrac{2}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Hemisphere = 2 \pi r^2 \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Hemisphere = 3 \pi r^2

\boxed{\bigstar{\sf \ Sphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Sphere= \dfrac{4}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Surface\ Area \ of \ Sphere = 4 \pi r^2


BrainlyIAS: Noice :-) ♥
Similar questions