Math, asked by SandraHannahJoseph, 5 months ago

Milk powder comes in a cylindrical container whose base has a diameter of 14cm and height of 20 cm find its volume.

Answers

Answered by sharmaraja44079
1

Answer:

milk powder comes in a cylindrical container whose base has a diameter of 14cm and height of 20 cm answer its volume. - 32467187

Answered by Anonymous
8

QUESTION:-

Milk powder comes in a cylindrical container whose base has a diameter of 14cm and height of 20 cm. Find its volume.

REQUIRED ANSWER:-

\bf \red {Given:-}

\sf{Diameter  \:  of  \: Cylinder = 14 cm}

\sf{Height  \:  of  \: Cylinder = 20 cm}

\bf \red {To  \: Find:- }\sf{Volume \:  of  \: milk  \: powder  \: in \:  container}

Diagram:-

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{7cm}}\put(9,17.5){\sf{20cm}}\end{picture}

\large \qquad \quad  { \pink{  \bigstar}}{ \underline{\sf {According \:  to \:  Question:- }}}

↦Volume of Milk powder = Volume of container

 \dag { \boxed{ \sf{ \purple{Volume \:  of  \: Cylinder  =  \pi  {r}^{2} h}}}}

Note.! :- Here 'r' and 'h' are 'radius' and 'height' of the cylinder respectively.

↦Let us now put all the values in the formula.

 \rightarrow \sf{ Volume  = \pi {r}^{2}h  }

 \rightarrow \sf{ Volume  =  \frac{22}{7}  \times  {14}\times 20  }

 \rightarrow \sf{ Volume  =  \frac{22}{7}  \times  {7 \times 7}\times 20  }

 \rightarrow \sf{ Volume  =  22 \times  {7}\times 20  }

 \rightarrow \sf{ Volume  =  154\times 20  }

 \rightarrow \sf{ Volume  = 3080}

\sf {Volume  \: of  \: Cylinder = {3080cm}^{3} }

 \huge  { \boxed{ \underline{ \frak{ \pink{  So, the \:  volume  \: of  \: Cylinder \:  is  \:  {3080cm}^{3} }}}}}

\rule{300}{1.5}

EXPLORE MORE:-

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

\rule{300}{1.5}

Similar questions