Computer Science, asked by suryanshrastogi, 9 months ago

Minimize: F =PQ +(PR)' + PQ'R using Boolean laws.​

Answers

Answered by AditiHegde
33

Minimization of F =PQ +(PR)' + PQ'R using Boolean laws.​

  • Given,
  • F =PQ +(PR)' + PQ'R
  • F = PQ (R+R') +(PR)' + PQ'R           (∵ R+R' = 1)
  • F = PQR + PQR' +(PR)' + PQ'R
  • F = PR (Q+Q') + PQR' + (PR)'
  • F = PR + PQR' +(PR)'
  • F = 1 + PQR'         [∵ PR + (PR)' = 1]
  • ∴ F = 1 + PQR'
Answered by SerenaBochenek
8

The correct answer will be "1+PQ\bar{R}". The further description is given below.

Explanation:

The given equation is:

F=PQ+{PR}'+P{Q}'R

On applying Boolean laws, we get

⇒  F=PQ+\bar{PR}+P\bar{Q}R

        =PQ(R+\bar{R})+\bar{PR}+P\bar{Q}R

∴ (a+\bar{a}=1)

       =PQR+PQ\bar{R}+P\bar{R}+P\bar{Q}R

       =PR(Q+\bar{Q})+PQ\bar{R}+\bar{PR}

       =PR+\bar{PR}+PQ\bar{R}

       =1+PQ\bar{R}

Learn more:

https://brainly.in/question/14958070

Similar questions