Math, asked by ankitshandilya719, 9 months ago

Minimum integral value of a for
which the equation no
x^4 - 2ax²+x+a^2 - a=0 has all
its roots real.​

Answers

Answered by Anonymous
3

 \bf \huge \blue{Answer : -  }

 \sf \: given \:  \: the \:  \: equation \: \\ \\  \sf  {x}^{4}  - 2ax + x +  {a}^{2}  - a = 0 \\  \\  \sf \: considering \:  \: it \:  \: is \:  \: a \:  \: quadratic \:  \: equation \:  \: in \: a \:  {a}^{2} - a(1 +  {2x}^{2}  ) +  {x}^{4}  + x = 0 \\  \\  \sf  \: solving \:  \: the \:  \: equation \:  \: we \:  \: get \\  \\ \sf \: \frac{a =  - [ - (1 +  {2x}^{2} )] ± \sqrt{ - (1 + 2x) - 4( {x}^{4}  + x)}   }{2}  \\  \\  \sf \:  =  \frac{(1 +  {2x}^{2} )± \sqrt{1 +  {4x}^{2}  +  {4x}^{4}  -  {4x}^{4}  - 4x} }{2}  \\  \\  \sf \:  =  \frac{(1 +  {2x}^{2}) ±(2x - 1)}{2}  \\  \\  \sf \therefore \: a =  \frac{1 +  {2x}^{2} + 2x - 1 }{2}  \:  \: and \:  \:  \frac{1 +  {2x}^{2} - 2x - 1 }{2}  \\  \\ a =  {x}^{2}  + x \:  \:  \: and \:  \:  \:  {x}^{2}  - x + 1 \\  \\ ths \:  \: we \:  \: get \:  \: a \:  \: fact

( {x}^{2}  + x - a)( {x}^{2}  - x + 1 -  a) = 0 \\  \\ for \:  \:  {x}^{2}  + x - a = 0 \\  \\ x =  \frac{ - 1± \sqrt{1 + 4a} }{2}  \\  \\ for \:  \: the \:  \: roots \:  \: to \:  \: be \:  \: real \:  \: 1 + 4a \ge \: 0 \\  \\  = a \ge \:  \frac{ - 1}{4}  \\  \\ so \:  \: a \:  \: has \:  \: the \:  \: roots \:  \: in \:  \left  [\frac{ - 1}{4} ,\infty \right ] \\  \\ for \:  \:  {x}^{2}  - x + 1 - a = 0 \\  \\ x =  \frac{ - 1± \sqrt{4a - 3} }{2}  \\  \\ for \:  \: the \:  \: roots \:  \: to \:  \: be \:  \: real \\  \\ 4a - 3 \ge0 \\  \\ a \ge \frac{3}{4}

so \:  \: a \:  \: has \:  \: the \:  \: roots \:  \: in \:  \: [ \frac{3}{4} , \infty ) \\  \\

Similar questions