Math, asked by StrongGirl, 9 months ago

Minimum value of 22^sinx + 2^cosx is:

Attachments:

Answers

Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

AM - GM INEQUALITY

For any two non zero real numbers a , b

 \displaystyle \:  \frac{a + b}{2}  \geqslant  \sqrt{ab}

The equality occurs when a = b

EVALUATION

Applying above mentioned inequality on

 \displaystyle \:  {2}^{ sinx}  \:  \: and \:  \:  \:  {2}^{ cosx}  \:  \: we \:  \: get

 \displaystyle \: \frac{ {2}^{ sinx}   +   {2}^{ cosx} }{2} \:  \geqslant  \sqrt{ {2}^{ sinx}    \times    {2}^{ cosx} }

 \implies \:  \displaystyle \: {2}^{ sinx}   +   {2}^{ cosx} \:  \geqslant  2\sqrt{ {2}^{ sinx + cosx}    } \:  \:  \: ...(1)

Now

sinx + cosx

 \displaystyle \:  \sqrt{2}  ( \frac{1}{ \sqrt{2} } \: sinx + \frac{1}{ \sqrt{2} }  cosx)

 =  \displaystyle \:  \sqrt{2}  ( cos \frac{\pi}{4}  \: sinx +  sin \frac{\pi}{4}  cosx)

 =  \displaystyle \:  \sqrt{2}   \: sin(x + \frac{\pi}{4}   )

Now we know that minimum value of Sine of an angle is - 1

So

   \displaystyle \:    \: sin(x + \frac{\pi}{4}   ) \geqslant  - 1

So

   \displaystyle \:  \sqrt{2}   \: sin(x + \frac{\pi}{4}   ) \geqslant  -  \sqrt{2}

So

 \implies \:  \displaystyle \: {2}^{ sinx}   +   {2}^{ cosx} \:  \geqslant  2\times  \sqrt{ {2}^{ -  \sqrt{2} } }

 \implies \:  \displaystyle \: {2}^{ sinx}   +   {2}^{ cosx} \:  \geqslant  2\times  {2}^{ -  \frac{ \sqrt{2} }{2} }

 \implies \:  \displaystyle \: {2}^{ sinx}   +   {2}^{ cosx} \:  \geqslant  2\times  {2}^{ -  \frac{1 }{ \sqrt{2} } }

 \implies \:  \displaystyle \: {2}^{ sinx}   +   {2}^{ cosx} \:  \geqslant   {2}^{(1 -  \frac{1 }{ \sqrt{2} } )}

So the required minimum value is

 \displaystyle \: {2}^{(1 -  \frac{1 }{ \sqrt{2} } )}

Similar questions