Math, asked by ak9871923357, 5 months ago

minimum value of 3cosx+4sinx-8 is​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

y = 3 \cos(x)  + 4 \sin(x)  - 8

 \implies \: y = 5( \frac{3}{5}  \cos(x)  +  \frac{4}{5}  \sin(x)) -8   \\

 \implies \: y = 5 \sin(x +  \alpha )  - 8 \:  \: (where \:  \:  \alpha  =  \tan ^{ - 1} ( \frac{3}{4} ) )

Now,

 - 1 \leqslant  \sin(x +  \alpha ) \leqslant 1

 \implies -5  \leqslant 5  \sin(x +  \alpha )   \leqslant 5

 \implies - 5  -  8 \leqslant 5 \sin(x +  \alpha ) - 8  \leqslant 5  -  8 \\

 \implies - 13 \leqslant y \leqslant  - 3

so, the minimum value of 3cos(x) + 4sin(x) - 8 is -13

Similar questions