English, asked by subooraali60, 9 months ago

mixture of 20 L of milk and water contains 20% water
How much water should be added to this mixture so that
the new mixture contains 25%
water?

Answers

Answered by somveersingh881
5

Answer:

your answer is 1.34 litres approx.

Slide left to view full answer

 \huge \green{\leftarrow}

Explanation:

\huge \red { \underline { \underline {answer}}} \colon \\ amount \: of \: water \: mixed  =  \frac{ \cancel{20}}{ \cancel{100}}  \times \cancel {20}l \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 4l \\ let \: amount \: of \: water \: to \: be \: mixed \: in \: milk \: to \: be \: x \: litres  now \\  \implies (4 + x) = 25\% \: of \: (20 + x)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  (20 + x \: is \: new \: amount \:of \: mixture \: \\  after \: adding \: water \: to \: it) \\  \implies4 + x =  \frac{25}{100}  \times (20 + x) \\  \implies  4  + x =  \frac{500 + 25x}{100}  \\  \implies100(4 + x) = 500 + 25x \\  \implies400 + 100x = 500 + 25x \\  \implies100x - 25x = 500 - 400 \\  \implies75x = 100 \\  \implies \: x =  \frac{ \cancel{100}}{ \cancel{75} }  \\  \implies \: x = 1.34 \: litres  \: approx. \\ 1.34 \: litres \: approx. \: should \: be \: added \: to  \: have \: 25\% \: of \: water \: in \: mixture \\ \huge  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \downarrow \downarrow\downarrow\downarrow\downarrow \\  \\  \\     \huge \orange{hope \: it \: help \: you } \\  \huge plese \: mark \: as \: brainliest \\  \huge  \green {have \: a \: nice \: day}

Similar questions