Science, asked by brainlyboy11140, 8 months ago

Mod challenge

Prove : \begin{pmatrix}1&2\\ 3&4\end{pmatrix}^3=\begin{pmatrix}37&54\\ 81&118\end{pmatrix}

!!!!

Answers

Answered by Anonymous
3

Question :

☯ Prove \large \begin{pmatrix}1&2\\ 3&4\end{pmatrix}^3=\begin{pmatrix}37&54\\ 81&118\end{pmatrix}

━━━━━━━━━━━━━

Given :

✭ Matrix given : \begin{pmatrix}1&2\\ 3&4\end{pmatrix}^3

━━━━━━━━━━━━━

Solution :

We know a³ = a² × a

\begin{pmatrix}1&2\\ 3&4\end{pmatrix}^3 = \begin{pmatrix}1&2\\ 3&4\end{pmatrix}^2+\begin{pmatrix}1&2\\ 3&4\end{pmatrix}

\longrightarrow \bf{ Solve\:\:\begin{pmatrix}1&2\\ 3&4\end{pmatrix}^2}

\bf{Multiply\:the\:rows\:of\:the\:first\:matrix\:by\:the\:columns\:of\:the\:second\:matrix}

\begin{pmatrix}1&2\end{pmatrix}\begin{pmatrix}1\\ 3\end{pmatrix}=1\cdot \:1+2\cdot \:3

\begin{pmatrix}1&2\end{pmatrix}\begin{pmatrix}2\\ 4\end{pmatrix}=1\cdot \:2+2\cdot \:4

\begin{pmatrix}3&4\end{pmatrix}\begin{pmatrix}1\\ 3\end{pmatrix}=3\cdot \:1+4\cdot \:3

\begin{pmatrix}3&4\end{pmatrix}\begin{pmatrix}2\\ 4\end{pmatrix}=3\cdot \:2+4\cdot \:4

=\large \begin{pmatrix}1\cdot \:1+2\cdot \:3&1\cdot \:2+2\cdot \:4\\ 3\cdot \:1+4\cdot \:3&3\cdot \:2+4\cdot \:4\end{pmatrix}

\bf{Simplify\:each\:element}

=\begin{pmatrix}7&10\\ 15&22\end{pmatrix}

\longrightarrow \bf{ Now\:\:Solve\:\:\begin{pmatrix}1&2\\ 3&4\end{pmatrix}^2+\begin{pmatrix}1&2\\ 3&4\end{pmatrix}}

Substitute value of : \begin{pmatrix}1&2\\ 3&4\end{pmatrix}^2

\longrightarrow \bf{\begin{pmatrix}1&2\\ 3&4\end{pmatrix}^2+\begin{pmatrix}1&2\\ 3&4\end{pmatrix}} = \begin{pmatrix}7&10\\ 15&22\end{pmatrix}\begin{pmatrix}1&2\\ 3&4\end{pmatrix}

\mathrm{Multiply\:the\:rows\:of\:the\:first\:matrix\:by\:the\:columns\:of\:the\:second\:matrix}

\begin{pmatrix}7&10\end{pmatrix}\begin{pmatrix}1\\ 3\end{pmatrix}=7\cdot \:1+10\cdot \:3

\begin{pmatrix}7&10\end{pmatrix}\begin{pmatrix}2\\ 4\end{pmatrix}=7\cdot \:2+10\cdot \:4

\begin{pmatrix}15&22\end{pmatrix}\begin{pmatrix}1\\ 3\end{pmatrix}=15\cdot \:1+22\cdot \:3

\begin{pmatrix}15&22\end{pmatrix}\begin{pmatrix}2\\ 4\end{pmatrix}=15\cdot \:2+22\cdot \:4

=\begin{pmatrix}7\cdot \:1+10\cdot \:3&7\cdot \:2+10\cdot \:4\\ 15\cdot \:1+22\cdot \:3&15\cdot \:2+22\cdot \:4\end{pmatrix}

\mathrm{Simplify\:each\:element}

=\begin{pmatrix}37&54\\ 81&118\end{pmatrix}

✭ LHS = RHS

Hence proved !!

Answered by Anonymous
7

Answer:

\begin{pmatrix}1&2\\ 3&4\end{pmatrix}^3 = \begin{pmatrix}1&2\\ 3&4\end{pmatrix}^2+\begin{pmatrix}1&2\\ 3&4\end{pmatrix}

=\large \begin{pmatrix}1\cdot \:1+2\cdot \:3&1\cdot \:2+2\cdot \:4\\ 3\cdot \:1+4\cdot \:3&3\cdot \:2+4\cdot \:4\end{pmatrix}

\longrightarrow \bf{ Now\:\:Solve\:\:\begin{pmatrix}1&2\\ 3&4\end{pmatrix}^2+\begin{pmatrix}1&2\\ 3&4\end{pmatrix}}

\longrightarrow \bf{\begin{pmatrix}1&2\\ 3&4\end{pmatrix}^2+\begin{pmatrix}1&2\\ 3&4\end{pmatrix}} = \begin{pmatrix}7&10\\ 15&22\end{pmatrix}\begin{pmatrix}1&2\\

\begin{pmatrix}7&10\end{pmatrix}\begin{pmatrix}1\\ 3\end{pmatrix}=7\cdot \:1+10\cdot \:3

=\begin{pmatrix}7\cdot \:1+10\cdot \:3&7\cdot \:2+10\cdot \:4\\ 15\cdot \:1+22\cdot \:3&15\cdot \:2+22\cdot \:4\end{pmatrix}

\mathrm{Simplify\:each\:element}

=\begin{pmatrix}37&54\\ 81&118\end{pmatrix}

Similar questions