English, asked by anshikaarora24, 10 months ago

modal ____________ i bookyour ticket along with mine? ​

Answers

Answered by harshsingh72
0

Answer:

AnswEr :

⋆ Refrence of Image is in the Diagram :

• Let's Head to the Question Now :

Diagonals of Parallelogram Bisects each other, Here at O.

Mid Points of Both Diagonal will be Equal.

\begin{lgathered}\implies \tt Mid \:Point \:of \:Diagonal \:AC=Mid \:Point \:of \:Diagonal \:BD \\ \\\implies \tt\bigg(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg) = \bigg(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg)\\ \\\implies \tt\bigg(\dfrac{-2+4}{2},\dfrac{1+b}{2}\bigg) = \bigg(\dfrac{a+1}{2},\dfrac{0+2}{2}\bigg) \\ \\\implies \tt\bigg( \cancel\dfrac{2}{2},\dfrac{1+b}{2}\bigg) = \bigg(\dfrac{a+1}{2},\cancel\dfrac{2}{2}\bigg) \\ \\\implies \tt\bigg( 1,\dfrac{1+b}{2}\bigg) = \bigg(\dfrac{a+1}{2},1\bigg) \\ \\\implies \tt1 = \dfrac{a+1}{2} \quad and \quad\dfrac{1+b}{2} = 1 \\ \\\implies \tt2 = a + 1\quad and \quad1 + b = 2 \\ \\\implies \red{\tt a = 1\quad} \tt and \quad \red{ b = 1}\end{lgathered}

⟹MidPointofDiagonalAC=MidPointofDiagonalBD

⟹(

2

x

1

+x

2

,

2

y

1

+y

2

)=(

2

x

1

+x

2

,

2

y

1

+y

2

)

⟹(

2

−2+4

,

2

1+b

)=(

2

a+1

,

2

0+2

)

⟹(

2

2

,

2

1+b

)=(

2

a+1

,

2

2

)

⟹(1,

2

1+b

)=(

2

a+1

,1)

⟹1=

2

a+1

and

2

1+b

=1

⟹2=a+1and1+b=2

⟹a=1andb=1

∴ Therefore, Value of a and, b will be 1.

• CALCULATION⠀OF⠀SIDES :

\begin{lgathered}\longrightarrow \tt AB = \sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}} \\ \\\longrightarrow \tt AB = \sqrt{(a-( - 2))^{2}+(0 - 1)^{2}} \\ \\\longrightarrow \tt AB = \sqrt{(1 + 2)^{2}+(1)^{2}} \\ \\\longrightarrow \tt AB = \sqrt{(3)^{2}+(1)^{2}} \\ \\\longrightarrow \tt AB = \sqrt{9 + 1} \\ \\\longrightarrow \green{\tt AB = \sqrt{10} \:unit}\end{lgathered}

⟶AB=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

⟶AB=

(a−(−2))

2

+(0−1)

2

⟶AB=

(1+2)

2

+(1)

2

⟶AB=

(3)

2

+(1)

2

⟶AB=

9+1

⟶AB=

10

unit

\begin{lgathered}\longrightarrow \tt BC = \sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}} \\ \\\longrightarrow \tt BC = \sqrt{(4-a)^{2}+(b-0)^{2}} \\ \\\longrightarrow \tt BC = \sqrt{(4-1)^{2}+(1-0)^{2}} \\ \\\longrightarrow \tt BC = \sqrt{(3)^{2}+(1)^{2}} \\ \\\longrightarrow \tt BC = \sqrt{9 + 1} \\\\\longrightarrow \green{\tt BC = \sqrt{10} \:unit}\end{lgathered}

⟶BC=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

⟶BC=

(4−a)

2

+(b−0)

2

⟶BC=

(4−1)

2

+(1−0)

2

⟶BC=

(3)

2

+(1)

2

⟶BC=

9+1

⟶BC=

10

unit

◗ In Parallelogram opposite sides are equal

⇒ AB = CD = √10 Unit

⇒ BC = AD = √10 Unit

∴ Therefore, All Sides will be √10 unit.

#answerwithquality #BAL

Answered by lillymolleti492002
0

May I book your ticket along with mine?

Similar questions