Math, asked by horrorhunter, 9 months ago

MODERATOR CHALLENGE:


don't try to spam it will be useless as your answer will be reported and your points will be deducted ​

Attachments:

Answers

Answered by pulakmath007
1

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

Let

 \displaystyle \:  \: z \:  =  \frac{1 - i \: cos \theta}{1  + 2 i \: cos \theta}

 \implies \:  \displaystyle \:  \: z \:  =  \frac{(1 - i \: cos \theta)(1   -  2 i \: cos \theta)}{(1   -  2 i \: cos \theta)(1  + 2 i \: cos \theta)}

 \implies \:  \displaystyle \:  \: z \:  =  \frac{(1   -  2 i \: cos \theta -i \: cos \theta + 2 {i}^{2}  {cos}^{2} \theta)}{(1   -  4 {i}^{2}  \:  {cos}^{2}  \theta)}

 \implies \:  \displaystyle \:  \: z \:  =  \frac{(1   -  3 i \: cos \theta   - 2   {cos}^{2} \theta)}{(1   +  4  \:  {cos}^{2}  \theta)}

 \implies \:  \displaystyle \:  \: z \:  =  \frac{(1     - 2   {cos}^{2} \theta)}{(1   +  4  \:  {cos}^{2}  \theta)}  - \frac{  3 i \: cos \theta   }{(1   +  4  \:  {cos}^{2}  \theta)}

Now z is a real number if Imaginary part = 0

So

 \displaystyle \: \frac{ -  3  \: cos \theta   }{(1   +  4  \:  {cos}^{2}  \theta)}  = 0

 \displaystyle \:  \: cos \theta \:  = 0

Hence

 \theta \:  = (2n + 1) \frac{\pi}{2}  \:  \:  \:  , \:  \: n \:  \in I

Similar questions