Math, asked by choudhryhello, 6 hours ago

moderators
brainly star
brainly teacher
best users

find the value of
sin15 degree +cos15 degree

Answers

Answered by YourHelperAdi
4

To Find :

The value of :

sin15° + cos15°

_____________________

We know that :

  • sin15° = sin(45° -30°)
  • cos15° = cos(45°-30°)

_____________________

Formula To be used :

The formula of compound trigonometric angles :

  • sin(A-B) = sinA.cosB - cosA.sinB
  • Cos(A-B) = cosA.cosB + sinA.sinB

Here, A = 45°

B = 30°

_____________________

Solution :

we know that,

Sin15° = sin(45°-30°)

 \tt{ \implies sin15 \degree = sin45 \degree  \times cos 30 \degree + cos45 \degree \times sin30 \degree}

 \tt{ \implies \: sin15 \degree =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}   -  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}   }

 \tt{ \implies \: sin15 \degree =  \frac{ \sqrt{3} }{ 2\sqrt{2} }  -  \frac{1}{2 \sqrt{2} } }

 \tt{ \implies  \: sin15 \degree =  \frac{ \sqrt{3} - 1 }{2 \sqrt{2} } }

Cos 15° = cos(45°-30°)

 \tt{ \implies \: cos15 \degree = cos45 \degree  \times cos 30 \degree + sin45 \degree  \times  sin30 \degree}

 \tt{ \implies  \: cos15 \degree =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} }   \times  \frac{1}{2} }

 \tt{ \implies \: cos15 \degree =  \frac{ \sqrt{3} }{2 \sqrt{2} }  +  \frac{1}{2 \sqrt{2} } }

 \implies \tt{ \: cos15 \degree =  \frac{ \sqrt{3}  + 1}{2 \sqrt{2} } }

so, we have got the value of sin15° and cos15° .

so, sin15°+cos15° :

 \tt{ \implies \: sin15 \degree +  cos15 \degree =  \frac{ \sqrt{3} - 1 }{2 \sqrt{2} }  +  \frac{ \sqrt{3}  + 1}{2 \sqrt{2} } }

  \tt{\implies \: sin 15 \degree + cos15 \degree =  \frac{( \sqrt{3}   - 1) + ( \sqrt{3}   + 1)}{2 \sqrt{2} } }

 \tt{ \implies  \: sin15 \degree + cos 15 \degree =  \frac{2 \sqrt{3} }{2 \sqrt{2} } }

 \tt{ \implies \: sin15 \degree + cos15 \degree =  \frac{ \sqrt{3} }{ \sqrt{2} } }

 \red{ \underline{ \boxed{ \tt{ \implies \: sin15 \degree + cos15 \degree =  \sqrt{ \frac{3}{2} } }}}}

__________________________

Additional Information :

1] Trigonometric Ratio of compound Angles :

 \tt{ \bull \: sin (a + b) = sin  \: a \times cos \: b + cos \: a \times sin \: b}

 \tt{ \bull \: sin(a - b) = sin \: a \times cos \: b  - sin \: b  \times \: cos \: a }

For more see the Attachment :

Attachments:
Similar questions