Math, asked by guptaananya2005, 1 month ago

MODERATORS

BRAINLY STARS

BEST USER

PLEASE DONT SPAM

Attachments:

Answers

Answered by mathdude500
7

Given Question :-

 \sf \: \dfrac{d}{dx}log(tanx)

 \sf \:  \:  \:  \:  \: (a) \: 2 \: sec2x

 \sf \:  \:  \:  \:  \: (b) \: 2 \: cosec2x

 \sf \:  \:  \:  \:  \: (c) \: \: sec2x

 \sf \:  \:  \:  \:  \: (d) \: \: cosec2x

\green{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:\dfrac{d}{dx}log(tanx)

We know,

\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{1}{tanx}\dfrac{d}{dx}tanx

\rm \:  =  \: \dfrac{1}{tanx} \times  {sec}^{2}x

\rm \:  =  \: \dfrac{1}{\dfrac{sinx}{cosx} }  \times \dfrac{1}{ {cos}^{2}x}

\rm \:  =  \: \dfrac{1}{sinx \: cosx}

\rm \:  =  \: \dfrac{2}{2 \: sinx \: cosx}

\rm \:  =  \: \dfrac{2}{sin \: 2x}

\rm \:  =  \: 2cosec2x

Hence,

 \red{\rm \implies\:\rm \:\boxed{\tt{ \dfrac{d}{dx}log(tanx)  =  \: 2cosec2x \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn to More

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by diliptalpada265
4

Answer:

</p><p>  \mathtt \red{Given  \: Question  \: is</p><p>\frac{d}{dx} ( log( \tan(x) ) }

 \mathtt \red{apply \: chain \: rule :  \frac{1}{ \tan(x) }  \frac{d}{dx}  \tan(x) }

  \mathtt \red{\implies \:  \frac{1}{ \tan(x) } \sec ^{2} (x)  }

Similar questions