Math, asked by BrainlyQUESTIONER10, 17 days ago

♤ Moderators

♤ Brainly Stars

♤ Brainly Top Users

A simple pendulum of length L and mass M is oscillating in a plane about a vertical line between angular limits –∅ and +∅. For an angular displacement, θ (|θ|<∅) the tension in the string and velocity of the bob are T and v respectively. The following relations hold goods under the above condition.

i) T cosθ cosθ = Mg.

ii) T + Mg cosθ = Mv²/L.

iii) The magnitude of tangential acceleration of the bob
 {\sf{{(|a_{T}}}}{\sf{{|= g  \: sinθ_{}}}}
iv) T = Mg (3cosθ – 2cos∅)​

Answers

Answered by TrustedAnswerer19
29

{\orange{ \boxed{ \boxed{ \begin{array}{cc} \red{ \underline{ \sf \: from \: the \: figure :   }} \\  \\ \hookrightarrow \: \bf  \:Net \:  force \:  towards \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \bf \:   the \:  centre \: , \:F_N =T - Mg \: cos \theta \\  \\   \\  \hookrightarrow\:\bf \: Centrifugal \:  force \: , \:  F_C=  \frac{M {v}^{2} }{L} \\  \\   \\   \pink{ \underline{ \text{for \: the \: pendulum}}} \\  \\  \bf \: F_N = F_C  \\  \\  \implies  \blue{ \boxed{{ \orange{\bf \: T - Mg \: cos \theta =  \frac{M{v}^{2} }{L} }}}} \\  \\ \end{array}}}}}

So, correct condition is :

\green{ \boxed{ \begin{array}{cc}   \bf \: T - Mg \: cos \theta =  \frac{M {v}^{2} }{L} \end{array}}}

Attachments:
Answered by EmperorSoul
2

{\red{ \boxed{ \boxed{ \begin{array}{cc} \red{ \underline{ \sf \: From \: the \: figure :   }} \\  \\ \hookrightarrow \: \bf  \:Net \:  force \:  towards \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \bf \:   the \:  centre \: , \:F_N =T - Mg \: cos \theta \\  \\   \\  \hookrightarrow\:\bf \: Centrifugal \:  force \: , \:  F_C=  \frac{M {v}^{2} }{L} \\  \\   \\   \pink{ \underline{ \text{For \: the \: pendulum}}} \\  \\  \bf \: F_N = F_C  \\  \\  \implies  \blue{ \boxed{{ \orange{\bf \: T - Mg \: cos \theta =  \frac{M{v}^{2} }{L} }}}} \\  \\ \end{array}}}}}

So, correct condition is :

\green{ \boxed{ \begin{array}{cc}   \tt \: T - Mg \: cos \theta =  \frac{M {v}^{2} }{L} \end{array}}}

Similar questions