Math, asked by BrainlyQUESTIONER10, 1 month ago

♧Moderators
♧Brainly Stars
♧Brainly Top Users

Find the possible values of
 \sf \: sin {}^{ - 1} (1 - x) + cos {}^{ - 1}  \sqrt{x - 2}


Needed Quality Answer.​

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given expression of inverse Trigonometric function is

\rm :\longmapsto\: {sin}^{ - 1}(1 - x) +  {cos}^{ - 1} \sqrt{x - 2}

We know,

\boxed{ \tt{ \:  - 1 \leqslant  {sin}^{ - 1}x \leqslant 1 \: }}

So,

\red{\rm :\longmapsto\: {sin}^{ - 1}(1 - x) \: is \: defined \: if \: }

\rm \implies\: - 1 \leqslant (1 - x) \leqslant 1

\rm :\longmapsto\: - 1 - 1 \leqslant  - x \leqslant 1 - 1

\rm :\longmapsto\: - 2 \leqslant  - x \leqslant 0

\bf\implies \:0 \leqslant x \leqslant 2

Now, We know

\boxed{ \tt{ \:  - 1 \leqslant  {cos}^{ - 1}x \leqslant 1 \: }}

So,

\red{\rm :\longmapsto\: {cos}^{ - 1} \:  \sqrt{x - 2}  \: is \: defined \: if \: }

\rm :\longmapsto\: - 1 \leqslant  \sqrt{x - 2} \leqslant 1

On squaring both sides, we get

\rm :\longmapsto\:0 \leqslant x - 2 \leqslant 1

\rm :\longmapsto\:0 + 2 \leqslant x - 2 + 2 \leqslant 1 + 2

\bf\implies \:2 \leqslant x \leqslant 3

So, It means

\rm :\longmapsto\: {sin}^{ - 1}(1 - x) +  {cos}^{ - 1} \sqrt{x - 2} \: is \: defined \: when

\rm :\longmapsto\:x \in \: [0,2]  \: \cap \: [2,3]

\bf\implies \:x = 2

So, The possible value of

\rm :\longmapsto\: {sin}^{ - 1}(1 - x) +  {cos}^{ - 1} \sqrt{x - 2}

\rm \:  =  \:  {sin}^{ - 1}(1 - 2) +  {cos}^{ - 1} \sqrt{2 - 2}

\rm \:  =  \:  {sin}^{ - 1}( - 1) +  {cos}^{ - 1} \sqrt{0}

\rm \:  =  \:   -  \: {sin}^{ - 1}1 +  {cos}^{ - 1} 0

\rm \:  =  \:  -  \: \dfrac{\pi}{2}  + \dfrac{\pi}{2}

\rm \:  =  \:  0

Hence,

  • The possible value is 0.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Domain \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  {sin}^{ - 1}x  & \sf [ - 1, \: 1] \\ \\ \sf  {cos}^{ - 1}x & \sf [ - 1, \: 1] \\ \\ \sf  {tan}^{ - 1}x  & \sf R\\ \\ \sf  {cosec}^{ - 1}x  & \sf ( -  \infty , - 1] \cup \: [1, \:  \infty )\\ \\ \sf  {sec}^{ - 1}x  & \sf ( -  \infty , - 1] \cup \: [1, \:  \infty )\\ \\ \sf  {cot}^{ - 1}x  & \sf R \end{array}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
28

Question:-

Find the possible values of

\sf \: sin {}^{ - 1} (1 - x) + cos {}^{ - 1} \sqrt{x - 2}

Solution:-

We have,

\sf \: f(x) = sin {}^{ - 1} (1 - x) + cos {}^{ - 1}  \sqrt{x - 2}

We must have

\sf \:  - 1 \leqslant (1 - x)  \leqslant 1

\sf \:  =  >  - 2 \leqslant  - x \leqslant 0

\sf \:  =  > 0 \leqslant x \leqslant 2 \: and \: x - 2 \geqslant 0

\sf  =  > 0 \leqslant x \leqslant 2 \: and \: x \geqslant 2

\sf \therefore \: x = 2

Thus,expression is defined only for x = 2.

\sf \therefore f(2) = sin {}^{ - 1} ( - 1) + cos {}^{ - 1} (0)

\sf \:  = ( -  \frac{\pi}{2} ) + ( \frac{\pi}{2} )

\sf \:  = 0

Answer:-

The possible value of

\sf \: sin {}^{ - 1} (1 - x) + cos {}^{ - 1} \sqrt{x - 2}  \:  \: \:  \: is \: 0.

Similar questions